Previous |  Up |  Next

Article

Keywords:
Bianchi-Cartan-Vranceanu metric; slant curve; Legendre curve; Lancret invariant; helix
Summary:
We study Legendre and slant curves for Bianchi-Cartan-Vranceanu metrics. These curves are characterized through the scalar product between the normal at the curve and the vertical vector field and in the helix case they have a proper (non-harmonic) mean curvature vector field. The general expression of the curvature and torsion of these curves and the associated Lancret invariant (for the slant case) are computed as well as the corresponding variant for some particular cases. The slant (particularly Legendre) curves which are helices are completely determined.
References:
[1] Barros, M.: General helices and a theorem of Lancret. Proc. Am. Math. Soc. 125 1503-1509 (1997). DOI 10.1090/S0002-9939-97-03692-7 | MR 1363411 | Zbl 0876.53035
[2] Belkhelfa, M., Dillen, F., Inoguchi, J.-I.: Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces. {PDEs, Submanifolds and Affine Differential Geometry. Contributions of a Conference, Warsaw, Poland} B. Opozda et al. Banach Center Publ. 57 Polish Academy of Sciences, Institute of Mathematics, Warsaw 67-87 (2002). MR 1972463 | Zbl 1029.53071
[3] Belkhelfa, M., Hirică, I. E., Rosca, R., Verstraelen, L.: On Legendre curves in Riemannian and Lorentzian Sasaki spaces. Soochow J. Math. 28 81-91 (2002). MR 1893607 | Zbl 1013.53016
[4] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203 Birkhäuser, Boston (2010). MR 2682326 | Zbl 1246.53001
[5] Blair, D. E., Dillen, F., Verstraelen, L., Vrancken, L.: Deformations of Legendre curves. Note Mat. 15 99-110 (1995). MR 1611801 | Zbl 0907.53037
[6] Caddeo, R., Montaldo, S., Oniciuc, C., Piu, P.: The classification of biharmonic curves of Cartan-Vranceanu 3-dimensional spaces. {Modern Trends in Geometry and Topology. Proceedings of the 7th International Workshop on Differential Geometry and Its Applications, Deva, Romania, 2005} D. Andrica et al. Cluj University Press, Cluj-Napoca 121-131 (2006). MR 2250208 | Zbl 1135.58009
[7] Camci, Ç., Yayli, Y., Hacisalihoglu, H. H.: On the characterization of spherical curves in 3-dimensional Sasakian spaces. J. Math. Anal. Appl. 342 1151-1159 (2008). DOI 10.1016/j.jmaa.2007.12.056 | MR 2445265 | Zbl 1136.53043
[8] Călin, C., Crasmareanu, M.: Slant curves in 3-dimensional normal almost contact geometry. Mediterr. J. Math. 10 1067-1077 (2013). DOI 10.1007/s00009-012-0217-1 | MR 3045696 | Zbl 1269.53020
[9] Călin, C., Crasmareanu, M.: Slant curves and particles in 3-dimensional warped products and their Lancret invariants. Bull. Aust. Math. Soc. 88 128-142 (2013). DOI 10.1017/S0004972712000809 | MR 3096876
[10] Călin, C., Crasmareanu, M., Munteanu, M. I.: Slant curves in three-dimensional $f$-Kenmotsu manifolds. J. Math. Anal. Appl. 394 400-407 (2012). DOI 10.1016/j.jmaa.2012.04.031 | MR 2926230 | Zbl 1266.53056
[11] Cariñena, J. F., Lucas, J. de: Quantum Lie systems and integrability conditions. Int. J. Geom. Methods Mod. Phys. 6 1235-1252 (2009). DOI 10.1142/S021988780900420X | MR 2605548 | Zbl 1186.81067
[12] Cho, J. T., Inoguchi, J.-I., Lee, J.-E.: On slant curves in Sasakian 3-manifolds. Bull. Aust. Math. Soc. 74 359-367 (2006). DOI 10.1017/S0004972700040429 | MR 2273746 | Zbl 1106.53013
[13] Cho, J. T., Inoguchi, J.-I., Lee, J.-E.: Biharmonic curves in 3-dimensional Sasakian space forms. Ann. Mat. Pura Appl. (4) 186 685-701 (2007). DOI 10.1007/s10231-006-0026-x | MR 2317785 | Zbl 1141.53060
[14] Cho, J. T., Lee, J.-E.: Slant curves in contact pseudo-Hermitian 3-manifolds. Bull. Aust. Math. Soc. 78 383-396 (2008). DOI 10.1017/S0004972708000737 | MR 2472274 | Zbl 1158.53062
[15] Fastenakels, J., Munteanu, M. I., Veken, J. Van Der: Constant angle surfaces in the Heisenberg group. Acta Math. Sin., Engl. Ser. 27 747-756 (2011). DOI 10.1007/s10114-011-8428-0 | MR 2776411
[16] Fetcu, D.: Biharmonic Legendre curves in Sasakian space forms. J. Korean Math. Soc. 45 393-404 (2008). DOI 10.4134/JKMS.2008.45.2.393 | MR 2389544 | Zbl 1152.53049
[17] Inoguchi, J.-I.: Submanifolds with harmonic mean curvature vector field in contact 3-manifolds. Colloq. Math. 100 163-179 (2004). DOI 10.4064/cm100-2-2 | MR 2107514 | Zbl 1076.53065
[18] Izumiya, S., Takeuchi, N.: New special curves and developable surfaces. Turk. J. Math. 28 153-163 (2004). MR 2062560 | Zbl 1081.53003
[19] Lee, H.: Extensions of the duality between minimal surfaces and maximal surfaces. Geom. Dedicata 151 373-386 (2011). DOI 10.1007/s10711-010-9539-y | MR 2780757 | Zbl 1211.53010
[20] Lee, J.-E.: On Legendre curves in contact pseudo-Hermitian 3-manifolds. Bull. Aust. Math. Soc. 81 156-164 (2010). DOI 10.1017/S0004972709000872 | MR 2584930 | Zbl 1185.53048
[21] Ou, Y.-L., Wang, Z.-P.: Constant mean curvature and totally umbilical biharmonic surfaces in 3-dimensional geometries. J. Geom. Phys. 61 1845-1853 (2011). DOI 10.1016/j.geomphys.2011.04.008 | MR 2822453 | Zbl 1227.58004
[22] Piu, P., Profir, M. M.: On the three-dimensional homogeneous $SO(2)$-isotropic Riemannian manifolds. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 57 361-376 (2011). MR 2933389 | Zbl 1249.53017
[23] Veken, J. Van Der: Higher order parallel surfaces in Bianchi-Cartan-Vranceanu spaces. Result. Math. 51 339-359 (2008). DOI 10.1007/s00025-007-0282-0 | MR 2400172
[24] Wełyczko, J.: On Legrende curves in 3-dimensional normal almost contact metric manifolds. Soochow J. Math. 33 929-937 (2007). MR 2404614 | Zbl 1144.53041
[25] Wełyczko, J.: On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Result. Math. 54 377-387 (2009). DOI 10.1007/s00025-009-0364-2 | MR 2534454 | Zbl 1180.53080
Partner of
EuDML logo