Previous |  Up |  Next

Article

Keywords:
differential inclusion; stop operator; rate independence; convex set
Summary:
We consider a class of evolution differential inclusions defining the so-called stop operator arising in elastoplasticity, ferromagnetism, and phase transitions. These differential inclusions depend on a constraint which is represented by a convex set that is called the characteristic set. For $\rm BV$ (bounded variation) data we compare different notions of $\rm BV$ solutions and study how the continuity properties of the solution operators are related to the characteristic set. In the finite-dimensional case we also give a geometric characterization of the cases when these kinds of solutions coincide for left continuous inputs.
References:
[1] Aumann, G.: Reelle Funktionen. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete 68 Springer, Berlin (1954), German. MR 0061652 | Zbl 0056.05202
[2] Bourbaki, N.: Elements of Mathematics. Functions of a Real Variable. Elementary Theory. Springer Berlin (2004), translated from the 1976 French original. MR 2013000 | Zbl 1085.26001
[3] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies 5 North-Holland, Amsterdam, Elsevier, New York French (1973). MR 0348562
[4] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Applied Mathematical Sciences 121 Springer, New York (1996). DOI 10.1007/978-1-4612-4048-8_5 | MR 1411908 | Zbl 0951.74002
[5] Fraňková, D.: Regulated functions. Math. Bohem. 116 (1991), 20-59. MR 1100424
[6] Klein, O.: Representation of hysteresis operators acting on vector-valued monotaffine functions. Adv. Math. Sci. Appl. 22 (2012), 471-500. MR 3100006
[7] Krasnosel'skiĭ, M. A., Pokrovskiĭ, A. V.: Systems with Hysteresis. Springer Berlin (1989), translated from the Russian, Nauka, Moskva, 1983. MR 0742931
[8] Krejčí, P.: Evolution variational inequalities and multidimensional hysteresis operators. Nonlinear Differential Equations. Proceedings of the seminar in Differential Equations, Chvalatice, Czech Republic, 1998 Chapman & Hall/CRC Res. Notes Math. 404 Boca Raton (1999), 47-110 P. Drábek et al. MR 1695378 | Zbl 0949.47053
[9] Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto International Series. Mathematical Sciences and Applications 8 Gakkōtosho, Tokyo (1996). MR 2466538
[10] Krejčí, P., Laurençot, P.: Generalized variational inequalities. J. Convex Anal. 9 (2002), 159-183. MR 1917394 | Zbl 1001.49014
[11] Krejčí, P., Laurençot, P.: Hysteresis filtering in the space of bounded measurable functions. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 5 (2002), 755-772. MR 1934379 | Zbl 1177.35125
[12] Krejčí, P., Liero, M.: Rate independent Kurzweil processes. Appl. Math., Praha 54 (2009), 117-145. DOI 10.1007/s10492-009-0009-5 | MR 2491851 | Zbl 1212.49007
[13] Krejčí, P., Recupero, V.: Comparing $\rm BV$ solutions of rate independent processes. J. Convex Anal. 21 (2014), 121-146. MR 3235307
[14] Krejčí, P., Roche, T.: Lipschitz continuous data dependence of sweeping processes in $\rm BV$ spaces. Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 637-650. DOI 10.3934/dcdsb.2011.15.637 | MR 2774131
[15] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. MR 0111875 | Zbl 0090.30002
[16] Logemann, H., Mawby, A. D.: Extending hysteresis operators to spaces of piecewise continuous functions. J. Math. Anal. Appl. 282 (2003), 107-127. DOI 10.1016/S0022-247X(03)00097-0 | MR 2000333 | Zbl 1042.47049
[17] Marques, M. D. P. Monteiro: Differential Inclusions in Nonsmooth Mechanical Problems---Shocks and Dry Friction. Progress in Nonlinear Differential Equations and their Applications 9 Birkhäuser, Basel (1993). MR 1231975
[18] Moreau, J. J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equations 26 (1977), 347-374. DOI 10.1016/0022-0396(77)90085-7 | MR 0508661
[19] Moreau, J. J.: Solutions du processus de rafle au sens des mesures différentielles. Travaux Sém. Anal. Convexe 6 French (1976), Exposé No. 1, 17 pages. MR 0637888 | Zbl 0369.49007
[20] Moreau, J. J.: Rafle par un convexe variable II. Travaux du Séminaire d'Analyse Convexe II U. É. R. de Math., Univ. Sci. Tech. Languedoc Montpellier French (1972), Exposé No. 3, 36 pages. MR 0637728 | Zbl 0343.49020
[21] Recupero, V.: A continuity method for sweeping processes. J. Differ. Equations 251 (2011), 2125-2142. DOI 10.1016/j.jde.2011.06.018 | MR 2823662 | Zbl 1237.34116
[22] Recupero, V.: $\rm BV$ solutions of rate independent variational inequalities. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 10 (2011), 269-315. MR 2856149
[23] Recupero, V.: Extending vector hysteresis operators. J. Phys., Conf. Ser. 268 Article No. 0120124, 12 pages (2011). DOI 10.1088/1742-6596/268/1/012024
[24] Recupero, V.: $\rm BV$-extension of rate independent operators. Math. Nachr. 282 (2009), 86-98. DOI 10.1002/mana.200610723 | MR 2473132
[25] Recupero, V.: On a class of scalar variational inequalities with measure data. Appl. Anal. 88 (2009), 1739-1753. DOI 10.1080/00036810903397446 | MR 2588416 | Zbl 1177.74308
[26] Recupero, V.: Sobolev and strict continuity of general hysteresis operators. Math. Methods Appl. Sci. 32 (2009), 2003-2018. DOI 10.1002/mma.1124 | MR 2560936 | Zbl 1214.47081
[27] Recupero, V.: On locally isotone rate independent operators. Appl. Math. Lett. 20 (2007), 1156-1160. DOI 10.1016/j.aml.2006.10.006 | MR 2358793 | Zbl 1152.47059
[28] Siddiqi, A. H., Manchanda, P., Brokate, M.: On some recent developments concerning Moreau's sweeping process. Trends in Industrial and Applied Mathematics 33, Amritsar, 2001 Appl. Optim. 72 Kluwer, Dordrecht (2002), 339-354 A. H. Siddiqi et al. DOI 10.1007/978-1-4613-0263-6_15 | MR 1954114
[29] Visintin, A.: Differential Models of Hysteresis. Applied Mathematical Sciences 111 Springer, Berlin (1994), F. John et al. MR 1329094 | Zbl 0820.35004
Partner of
EuDML logo