[1] Aumann, G.:
Reelle Funktionen. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete 68 Springer, Berlin (1954), German.
MR 0061652 |
Zbl 0056.05202
[2] Bourbaki, N.:
Elements of Mathematics. Functions of a Real Variable. Elementary Theory. Springer Berlin (2004), translated from the 1976 French original.
MR 2013000 |
Zbl 1085.26001
[3] Brézis, H.:
Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies 5 North-Holland, Amsterdam, Elsevier, New York French (1973).
MR 0348562
[5] Fraňková, D.:
Regulated functions. Math. Bohem. 116 (1991), 20-59.
MR 1100424
[6] Klein, O.:
Representation of hysteresis operators acting on vector-valued monotaffine functions. Adv. Math. Sci. Appl. 22 (2012), 471-500.
MR 3100006
[7] Krasnosel'skiĭ, M. A., Pokrovskiĭ, A. V.:
Systems with Hysteresis. Springer Berlin (1989), translated from the Russian, Nauka, Moskva, 1983.
MR 0742931
[8] Krejčí, P.:
Evolution variational inequalities and multidimensional hysteresis operators. Nonlinear Differential Equations. Proceedings of the seminar in Differential Equations, Chvalatice, Czech Republic, 1998 Chapman & Hall/CRC Res. Notes Math. 404 Boca Raton (1999), 47-110 P. Drábek et al.
MR 1695378 |
Zbl 0949.47053
[9] Krejčí, P.:
Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto International Series. Mathematical Sciences and Applications 8 Gakkōtosho, Tokyo (1996).
MR 2466538
[10] Krejčí, P., Laurençot, P.:
Generalized variational inequalities. J. Convex Anal. 9 (2002), 159-183.
MR 1917394 |
Zbl 1001.49014
[11] Krejčí, P., Laurençot, P.:
Hysteresis filtering in the space of bounded measurable functions. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 5 (2002), 755-772.
MR 1934379 |
Zbl 1177.35125
[13] Krejčí, P., Recupero, V.:
Comparing $\rm BV$ solutions of rate independent processes. J. Convex Anal. 21 (2014), 121-146.
MR 3235307
[14] Krejčí, P., Roche, T.:
Lipschitz continuous data dependence of sweeping processes in $\rm BV$ spaces. Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 637-650.
DOI 10.3934/dcdsb.2011.15.637 |
MR 2774131
[15] Kurzweil, J.:
Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449.
MR 0111875 |
Zbl 0090.30002
[17] Marques, M. D. P. Monteiro:
Differential Inclusions in Nonsmooth Mechanical Problems---Shocks and Dry Friction. Progress in Nonlinear Differential Equations and their Applications 9 Birkhäuser, Basel (1993).
MR 1231975
[19] Moreau, J. J.:
Solutions du processus de rafle au sens des mesures différentielles. Travaux Sém. Anal. Convexe 6 French (1976), Exposé No. 1, 17 pages.
MR 0637888 |
Zbl 0369.49007
[20] Moreau, J. J.:
Rafle par un convexe variable II. Travaux du Séminaire d'Analyse Convexe II U. É. R. de Math., Univ. Sci. Tech. Languedoc Montpellier French (1972), Exposé No. 3, 36 pages.
MR 0637728 |
Zbl 0343.49020
[22] Recupero, V.:
$\rm BV$ solutions of rate independent variational inequalities. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 10 (2011), 269-315.
MR 2856149
[28] Siddiqi, A. H., Manchanda, P., Brokate, M.:
On some recent developments concerning Moreau's sweeping process. Trends in Industrial and Applied Mathematics 33, Amritsar, 2001 Appl. Optim. 72 Kluwer, Dordrecht (2002), 339-354 A. H. Siddiqi et al.
DOI 10.1007/978-1-4613-0263-6_15 |
MR 1954114
[29] Visintin, A.:
Differential Models of Hysteresis. Applied Mathematical Sciences 111 Springer, Berlin (1994), F. John et al.
MR 1329094 |
Zbl 0820.35004