Previous |  Up |  Next

Article

Keywords:
supermanifolds; holonomy; group functor
Summary:
The classical Wilson loop is the gauge-invariant trace of the parallel transport around a closed path with respect to a connection on a vector bundle over a smooth manifold. We build a precise mathematical model of the super Wilson loop, an extension introduced by Mason-Skinner and Caron-Huot, by endowing the objects occurring with auxiliary Graßmann generators coming from $S$-points. A key feature of our model is a supergeometric parallel transport, which allows for a natural notion of holonomy on a supermanifold as a Lie group valued functor. Our main results for that theory comprise an Ambrose-Singer theorem as well as a natural analogon of the holonomy principle. Finally, we compare our holonomy functor with the holonomy supergroup introduced by Galaev in the common situation of a topological point. It turns out that both theories are different, yet related in a sense made precise.
References:
[1] Alday, L., Maldacena, J.: Gluon scattering amplitudes at strong coupling. JHEP, 2007, 06, 2007, MR 2326587
[2] Alday, L., Roiban, R.: Scattering amplitudes, Wilson loops and the string/gauge theory correspondence. Phys. Reports, 468, 5, 2008, 153-211, DOI 10.1016/j.physrep.2008.08.002 | MR 2475059
[3] Ballmann, W.: Vector bundles and connections. 2002, Lecture notes, Universität Bonn,
[4] Bär, C.: Gauge theory. 2009, Lecture notes, Universität Potsdam,
[5] Belitsky, A.: Conformal anomaly of super Wilson loop. Nucl. Phys. B, 862, 2012, 430-449, DOI 10.1016/j.nuclphysb.2012.04.022 | MR 2924694 | Zbl 1246.81105
[6] Belitsky, A., Korchemsky, G., Sokatchev, E.: Are scattering amplitudes dual to super Wilson loops?. Nucl. Phys. B, 855, 2012, 333-360, DOI 10.1016/j.nuclphysb.2011.10.014 | MR 2854542 | Zbl 1229.81176
[7] Brandhuber, A., Heslop, P., Travaglini, G.: MHV amplitudes in $N=4$ super Yang-Mills and Wilson loops. Nucl. Phys. B, 794, 2008, 231-243, DOI 10.1016/j.nuclphysb.2007.11.002 | MR 2386887
[8] Carmeli, C., Caston, L., Fioresi, and R.: Mathematical Foundations of Supersymmetry. 2011, European Mathematical Society, MR 2840967
[9] Caron-Huot, S.: Notes on the scattering amplitude / Wilson loop duality. JHEP, 2011, 07, 2011, MR 2875966 | Zbl 1298.81357
[10] Deligne, P., Freed, D.: Supersolutions. Quantum Fields and Strings: A Course for Mathematicians, 1999, American Mathematical Society, MR 1701600 | Zbl 1170.81431
[11] Drummond, J., Korchemsky, G., Sokatchev, E.: Conformal properties of four-gluon planar amplitudes and Wilson loops. Nucl. Phys. B, 795, 2008, 385-408, DOI 10.1016/j.nuclphysb.2007.11.041 | MR 2392215 | Zbl 1219.81227
[12] Galaev, A.: Holonomy of supermanifolds. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 79, 2009, 47-78, MR 2541343 | Zbl 1182.58004
[13] Gorbatsevich, V., Onishchik, A., Vinberg, E.: Foundations of Lie Theory and Lie Transformation Groups. 1997, Springer, MR 1631937 | Zbl 0999.17500
[14] Groeger, J.: Holomorphic supercurves and supersymmetric sigma models. J. Math. Phys., 52, 12, 2011, DOI 10.1063/1.3665710 | MR 2907649 | Zbl 1273.81148
[15] Groeger, J.: Vertex operators of super Wilson loops. Phys. Rev. D, 86, 10, 2012, DOI 10.1103/PhysRevD.86.105039
[16] Hanisch, F.: Variational problems on supermanifolds. 2012, Dissertation, Universität Potsdam,
[17] Hélein, F.: A representation formula for maps on supermanifolds. J. Math. Phys., 49, 2, 2008, DOI 10.1063/1.2840464 | MR 2392866 | Zbl 1153.81374
[18] Hélein, F.: An introduction to supermanifolds and supersymmetry. Systèmes intégrables et théorie des champs quantiques, 2009, 103-157, Hermann,
[19] Khemar, I.: Supersymmetric harmonic maps into symmetric spaces. Journal of Geometry and Physics, 57, 8, 2007, 1601-1630, MR 2316716 | Zbl 1120.53039
[20] Leites, D.: Introduction to the theory of supermanifolds. Russian Math. Surveys, 35, 1, 1980, DOI 10.1070/RM1980v035n01ABEH001545 | MR 0565567 | Zbl 0462.58002
[21] Mason, L., Skinner, D.: The complete planar $S$-matrix of $N=4$ SYM as a Wilson loop in twistor space. JHEP, 2010, 12, 2010, MR 2818481
[22] Molotkov, V.: Infinite-dimensional $\mathbb{Z}^k_2$-supermanifolds. 1984, ICTP Preprints, IC/84/183,
[23] Monterde, J., Sánchez-Valenzuela, O.: Existence and uniqueness of solutions to superdifferential equations. Journal of Geometry and Physics, 10, 4, 1993, 315-343, DOI 10.1016/0393-0440(93)90003-W | MR 1218555 | Zbl 0772.58007
[24] Sachse, C.: A categorical formulation of superalgebra and supergeometry. 2008, Preprint, Max Planck Institute for Mathematics in the Sciences,
[25] Sachse, C., Wockel, C.: The diffeomorphism supergroup of a finite-dimensional supermanifold. Adv. Theor. Math. Phys., 15, 2, 2011, 285-323, DOI 10.4310/ATMP.2011.v15.n2.a2 | MR 2924232 | Zbl 1268.58009
[26] Tennison, B.: Sheaf Theory. 1975, Cambridge University Press, MR 0404390 | Zbl 0313.18010
[27] Varadarajan, V.: Supersymmetry for Mathematicians: An Introduction. 2004, American Mathematical Society, MR 2069561 | Zbl 1142.58009
[28] Yamabe, H.: On an arcwise connected subgroup of a Lie group. Osaka Math. J., 2, 1, 1950, 13-14, MR 0036766 | Zbl 0039.02101
Partner of
EuDML logo