Previous |  Up |  Next

Article

Keywords:
Hausdorff metric; hyperspace; triangular norms; stationary fuzzy metric
Summary:
In this paper, we generalize the classical Hausdorff metric with t-norms and obtain its basic properties. Furthermore, for a given stationary fuzzy metric space with a t-norm without zero divisors, we propose a method for constructing a generalized Hausdorff fuzzy metric on the set of the nonempty bounded closed subsets. Finally we discuss several important properties as completeness, completion and precompactness.
References:
[1] Adibi, H., Cho, Y. J., O'Regan, D., Saadati, R.: Common fixed point theorems in $L$-fuzzy metric spaces. Appl. Math. Comput. 182 (2006), 820-828. DOI 10.1016/j.amc.2006.04.045 | MR 2292091
[2] Aubin, J. P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York 1984. MR 0749753 | Zbl 1115.47049
[3] Azé, D., Corvellec, J. N., Lucchetti, R. E.: Variational pairs and applications to stability in nonsmooth analysis. Nonlinear Anal. Theory Methods Appl. 49 (2002), 643-670. MR 1894302 | Zbl 1035.49014
[4] Beer, G.: Topologies on Closed and Closed Convex Sets. Kluwer Academic Publishers, Dordrecht 1993. MR 1269778 | Zbl 0792.54008
[5] Chang, S. S., Cho, Y. J., Lee, B. S., Jung, J. S., Kang, S. M.: Coincidence point and minimization theorems in fuzzy metric spaces. Fuzzy Sets and Systems 88 (1997), 119-128. MR 1449500
[6] Cho, Y. J., Petrot, N.: Existence theorems for fixed fuzzy points with closed $\alpha$-cut sets in complete metric spaces. Fuzzy Sets and Systems 26 (2011), 115-124. MR 2789801 | Zbl 1207.54055
[7] Deng, Z. K.: Fuzzy pseudo-metric spaces. J. Math. Anal. Appl. 86 (1982), 74-95. DOI 10.1016/0022-247X(82)90255-4 | Zbl 0589.54006
[8] Engelking, R.: General Topology. PWN-Polish Science Publishers, Warsaw 1977. MR 0500780 | Zbl 1281.54001
[9] George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets and Systems 64 (1994), 395-399. DOI 10.1016/0165-0114(94)90162-7 | MR 1289545 | Zbl 0843.54014
[10] Ghil, B. M., Kim, Y. K.: Continuity of functions defined on the space of fuzzy sets. Inform. Sci. 157 (2003), 155-165. DOI 10.1016/S0020-0255(03)00180-4 | MR 2023712 | Zbl 1051.54004
[11] Gregori, V., Sapena, A.: On fixed point theorem in fuzzy metric spaces. Fuzzy Sets and Systems 125 (2002), 245-252. MR 1880341
[12] Gregori, V., Romaguera, S.: On completion of fuzzy metric spaces. Fuzzy Sets and Systems 130 (2002), 399-404. MR 1928435 | Zbl 1010.54002
[13] Gregori, V., Romaguera, S.: Characterizing completable fuzzy metric spaces. Fuzzy Sets and Systems 144 (2004), 411-420. DOI 10.1016/S0165-0114(03)00161-1 | MR 2061403 | Zbl 1057.54010
[14] Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metrics and applications. Fuzzy Sets and Systems 170 (2011), 95-111. MR 2775611 | Zbl 1210.94016
[15] Hausdorff, F.: Set Theory. Chelsea, New York 1957. MR 0086020 | Zbl 1149.01022
[16] Hop, N.V.: Solving fuzzy (stochastic) linear programming problems using superiority and inferiority measures. Inform. Sci. 177 (2007), 1977-1991. DOI 10.1016/j.ins.2006.12.001 | MR 2303963 | Zbl 1128.90061
[17] Hop, N. V.: Solving linear programming problems under fuzziness and randomness environment using attainment values. Inform. Sci. 177 (2007), 2971-2984. DOI 10.1016/j.ins.2007.01.032 | MR 2333449 | Zbl 1178.90363
[18] Joo, S. Y., Kim, Y. K.: The Skorokhod topology on space of fuzzy numbers. Fuzzy Sets and Systems 111 (2000), 497-501. DOI 10.1016/S0165-0114(98)00185-7 | MR 1748559 | Zbl 0961.54024
[19] Joo, S. Y., Kim, Y. K.: Topological properties on the space of fuzzy sets. J. Math. Anal. Appl. 246 (2000), 576-590. DOI 10.1006/jmaa.2000.6820 | MR 1761949 | Zbl 0986.54012
[20] Kaleva, O., Seikkala, S.: On fuzzy metric spaces. Fuzzy Sets and Systems 12 (1984), 215-229. DOI 10.1016/0165-0114(84)90069-1 | MR 0740095 | Zbl 0558.54003
[21] Kaleva, O.: On the convergence of fuzzy sets. Fuzzy Sets and Systems 17 (1985), 53-65. DOI 10.1016/0165-0114(85)90006-5 | MR 0808463 | Zbl 0584.54004
[22] Kaleva, O.: Fuzzy differential equations. Fuzzy Sets and Systems 24 (1987), 301-317. DOI 10.1016/0165-0114(87)90029-7 | MR 0919058 | Zbl 1100.34500
[23] Kim, Y. K.: Compactness and convexity on the space of fuzzy sets. J. Math. Anal. Appl. 264 (2001), 122-132. DOI 10.1006/jmaa.2001.7658 | MR 1868332 | Zbl 1065.54001
[24] Kim, Y. K.: Compactness and convexity on the space of fuzzy sets II. Nonlinear Anal. Theory Methods Appl. 57 (2004), 639-653. MR 2067725 | Zbl 1065.54001
[25] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. MR 1790096 | Zbl 1087.20041
[26] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 326-334. MR 0410633
[27] Matheron, G.: Random Sets and Integral Geometry. Wiley, New York 1975. MR 0385969 | Zbl 0321.60009
[28] Mordukhovich, B. S., Shao, Y.: Fuzzy calculus for coderivatives of multifunctions. Nonlinear Anal. Theory Methods Appl. 29 (1997), 605-626. DOI 10.1016/S0362-546X(96)00082-X | MR 1452749 | Zbl 0879.58006
[29] Jr, S. B. Nadler: Multi-valued contraction mappings. Pacific J. Math. 30 (1969), 475-487. DOI 10.2140/pjm.1969.30.475 | MR 0254828
[30] Puri, M. L., Ralescu, D. A.: Fuzzy random variables. J. Math. Anal. Appl. 114 (1986), 409-422. DOI 10.1016/0022-247X(86)90093-4 | MR 0833596 | Zbl 0605.60038
[31] Qiu, D., Zhang, W.: On Decomposable Measures Induced by Metrics. J. Appl. Math. Volume 2012, Article ID 701206, 8 pages. MR 2948100 | Zbl 1252.28001
[32] Qiu, D., Zhang, W.: The strongest t-norm for fuzzy metric spaces. Kybernetika 49 (2013), 141-148. MR 3097387 | Zbl 1264.54020
[33] Qiu, D., Zhang, W., Li, C.: On decomposable measures constructed by using stationary fuzzy pseudo-ultrametrics. Int. J. Gen. Syst. 42 (2013), 395-404. DOI 10.1080/03081079.2012.758879 | MR 3022374 | Zbl 1280.28018
[34] Qiu, D., Zhang, W., Li, C.: Extension of a class of decomposable measures using fuzzy pseudometrics. Fuzzy Sets and Systems 222 (2013), 33-44. MR 3053889 | Zbl 1284.28017
[35] Rodríguez-López, J., Romaguera, S.: The Hausdorff fuzzy metric on compact sets. Fuzzy Sets and Systems 147 (2004), 273-283. MR 2089291 | Zbl 1069.54009
[36] Romaguera, S., Sanchis, M.: On fuzzy metric groups. Fuzzy Sets and Systems 124 (2001), 109-115. DOI 10.1016/S0165-0114(00)00085-3 | MR 1859783 | Zbl 0994.54007
[37] Shi, F. G., Zheng, C. Y.: Metrization theorems in L-topological spaces. Fuzzy Sets and Systems 149 (2005), 455-471. DOI 10.1016/j.fss.2004.02.003 | MR 2111885 | Zbl 1070.54007
[38] Trillas, E.: On the use of words and fuzzy sets. Inf. Sci. 176 (2006), 1463-1487. DOI 10.1016/j.ins.2005.03.008 | MR 2225325 | Zbl 1098.03066
[39] Zadeh, L. A.: Fuzzy sets. Inform. Control 8 (1965), 338-353. DOI 10.1016/S0019-9958(65)90241-X | MR 0219427 | Zbl 0942.00007
[40] Zhang, W., Qiu, D., Li, Z., Xiong, G.: Common fixed point theorems in a new fuzzy metric space. J. Appl. Math. Volume 2012, Article ID 890678, 18 pages. DOI 10.1155/2012/890678 | MR 2880834 | Zbl 1235.54057
Partner of
EuDML logo