[2] Baczyński, M.:
On the distributivity of fuzzy implications over continuous and Archimedean triangular conorms. Fuzzy Sets and Systems 161 (2010), 1406-1419.
MR 2606422 |
Zbl 1204.03029
[3] Baczyński, M.:
On the distributivity of fuzzy implications over representable uninorms. Fuzzy Sets and Systems 161 (2010), 2256-2275.
MR 2658032 |
Zbl 1252.03046
[4] Baczyński, M., Jayaram, B.:
Fuzzy Implications. Studies in Fuzziness and Soft Computing 231, Springer, Berlin Heidelberg 2008.
Zbl 1293.03012
[5] Baczyński, M., Jayaram, B.:
On the distributivity of fuzzy implications over nilpotent or strict triangular conorms. IEEE Trans. Fuzzy Syst. 17 (2009), 590-603.
DOI 10.1109/TFUZZ.2008.924201
[7] Baczyński, M., Szostok, T., Niemyska, W.: On a functional equation related to distributivity of fuzzy implications. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ IEEE 2013) Hyderabad 2013, pp. 1-5.
[8] Balasubramaniam, J., Rao, C. J. M.:
On the distributivity of implication operators over T and S norms. IEEE Trans. Fuzzy Syst. 12 (2004), 194-198.
DOI 10.1109/TFUZZ.2004.825075
[9] Combs, W. E., Andrews, J. E.:
Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Trans. Fuzzy Syst. 6 (1998), 1-11.
DOI 10.1109/91.660804
[12] Baets, B. De:
Fuzzy morphology: A logical approach. In: Uncertainty Analysis in Engineering and Science: Fuzzy Logic, Statistics, and Neural Network Approach (B. M. Ayyub and M. M. Gupta, eds.), Kluwer Academic Publishers, Norwell 1997, pp. 53-68.
Zbl 1053.03516
[13] Dick, S., Kandel, A.:
Comments on ``Combinatorial rule explosion eliminated by a fuzzy rule configuration". IEEE Trans. Fuzzy Syst. 7 (1999), 475-477.
DOI 10.1109/91.784213
[14] González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.:
Fuzzy hit-or-miss transform using the fuzzy mathematical morphology based on T-norms. In: Aggregation Functions in Theory and in Practise (H. Bustince et al., eds.), Advances in Intelligent Systems and Computing 228, Springer, Berlin - Heidelberg 2013, pp. 391-403.
Zbl 1277.68283
[16] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[17] Kuczma, M.:
An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality. Państwowe Wydawnictwo Naukowe (Polish Scientific Publishers) and Uniwersytet Śląski, Warszawa-Kraków-Katowice 1985.
MR 0788497 |
Zbl 1221.39041
[18] Ling, C. H.:
Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189-212.
MR 0190575 |
Zbl 0137.26401
[19] Mendel, J. M., Liang, Q.:
Comments on ``Combinatorial rule explosion eliminated by a fuzzy rule configuration". IEEE Trans. Fuzzy Syst. 7 (1999), 369-371.
DOI 10.1109/91.771093
[20] Qin, F., Baczyński, M., Xie, A.:
Distributive equations of implications based on continuous triangular norms (I). IEEE Trans. Fuzzy Syst. 20 (2012), 153-167.
DOI 10.1109/TFUZZ.2011.2171188
[22] Ruiz-Aguilera, D., Torrens, J.:
Distributivity of strong implications over conjunctive and disjunctive uninorms. Kybernetika 42 (2006), 319-336.
MR 2253392 |
Zbl 1249.03030
[23] Ruiz-Aguilera, D., Torrens, J.:
Distributivity of residual implications over conjunctive and disjunctive uninorms. Fuzzy Sets and Systems 158 (2007), 23-37.
MR 2287424 |
Zbl 1114.03022
[24] Trillas, E., Alsina, C.: On the law $[(p\wedge q)\to r]=[(p\to r)\vee(q\to r)]$ in fuzzy logic. IEEE Trans. Fuzzy Syst. 10 (2002), 84-88.