[2] Bredon, G.:
Equivariant cohomology theories. Lecture Notes in Math., no. 34, Springer-Verlag, Berlin-New York, 1967.
MR 0214062 |
Zbl 0162.27202
[3] Brown, R.:
The twisted Eilenberg-Zilber theorem. 1965 Simposio di Topologia (Messina, 1964), 1965, pp. 33–37.
MR 0220273
[4] Čadek, M., Krčál, M., Matoušek, J., Sergeraert, F., Vokřínek, L., Wagner, U.:
Computing all maps into a sphere. J. ACM 61 (2014), article no. 17.
DOI 10.1145/2597629 |
MR 3215297 |
Zbl 1295.68196
[5] Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L., Wagner, U.:
Polynomial time computation of homotopy groups and Postnikov systems in fixed dimensions. SIAM J. Comput. 43 (2014), 1728–1780.
DOI 10.1137/120899029 |
MR 3268623
[6] Čadek, M., Krčál, M., Vokřínek, L.: Algorithmic solvability of lifting extension problem. arXiv:1307.6444, 2013.
[8] Dwyer, W., Hirschhorn, P., Kan, D., Smith, J.:
Homotopy Limit Functors on Model Categories and Homotopical Categories. Math. Surveys Monogr., vol. 113, American Mathematical Society, Providence, 2004.
MR 2102294 |
Zbl 1072.18012
[10] Eilenberg, S., MacLane, S.:
On the groups $H(\pi , n)$, I. Ann. of Math. (2) 58 (1953), 55–106.
MR 0056295 |
Zbl 0050.39304
[11] Eilenberg, S., MacLane, S.:
On the groups $H(\pi , n)$, II. Ann. of Math. (2) 60 (1954), 49–139.
MR 0065163 |
Zbl 0055.41704
[13] Filakovský, M., Vokřínek, L.: Are two maps homotopic? An algorithmic viewpoint. arXiv:1312.2337, 2013.
[14] Goerss, P.G., Jardine, J.F.:
Simplicial homotopy theory. Birkhauser, Boston-Basel-Berlin, 1999.
MR 1711612 |
Zbl 0949.55001
[15] Gugenheim, V.K.A.M.:
On the chain-complex of a fibration. Illinois J. Math. 16 (1972), 398–414.
MR 0301736 |
Zbl 0238.55015
[16] Heras, J.: Effective homology for the pushout of simplicial sets. Proceedings XII Encuentros de Algebra Computacional y Aplicaciones (EACA 2010), 2010, pp. 152–156.
[18] Krčál, M., Matoušek, J., Sergeraert, F.:
Polynomial-time homology for simplicial Eilenberg-MacLane spaces. arXiv:1201.6222, 2012.
MR 3124946 |
Zbl 1295.68201
[19] May, J.P.:
Simplicial Objects in Algebraic Topology. Chicago Lectures in Math., Univ. Chicago Press, 1992, 1992 reprint of 1967 original.
MR 1206474 |
Zbl 0769.55001
[20] May, J.P., Piacenza, R.J., Cole, M.:
Equivariant homotopy and cohomology theory: Dedicated to the memory of Robert J. Piacenza. Providence, R.I.: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1996.
MR 1413302
[21] Riehl, E.:
Categorical Homotopy Theory. Cambridge University Press, 2014.
MR 3221774
[22] Rubio, J., Sergeraert, F.: Constructive Homological Algebra and Applications. Tech. report, Written in 2006 for a MAP Summer School at the University of Genova, 2012, arXiv:1208.3816v2.
[23] Shih, W.:
Homologie des espaces fibrés. Publications Mathématiques de l'IHÉS 13 (1962), 5–87.
MR 0144348 |
Zbl 0105.16903
[24] Stephan, M.: On equivariant homotopy theory for model categories. arXiv:1308.0856, 2013.