Previous |  Up |  Next

Article

Title: Distributional properties of powers of matrices (English)
Author: Chamizo, Fernando
Author: Raboso, Dulcinea
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 3
Year: 2014
Pages: 801-817
Summary lang: English
.
Category: math
.
Summary: We apply the larger sieve to bound the number of $2\times 2$ matrices not having large order when reduced modulo the primes in an interval. Our motivation is the relation with linear recursive congruential generators. Basically our results establish that the probability of finding a matrix with large order modulo many primes drops drastically when a certain threshold involving the number of primes and the order is exceeded. We also study, for a given prime and a matrix, the existence of nearby non-similar matrices having large order. In this direction we find matrices of large order when the trace is restricted to take values in a short interval. (English)
Keyword: larger sieve
Keyword: pseudorandom number
Keyword: finite field
Keyword: special linear group of degree 2
Keyword: general linear group of degree 2
MSC: 11C20
MSC: 11L05
MSC: 11N36
MSC: 11Z05
idZBL: Zbl 06391526
idMR: MR3298561
DOI: 10.1007/s10587-014-0133-6
.
Date available: 2014-12-19T16:14:05Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144059
.
Reference: [1] Baker, R. C., Harman, G.: Shifted primes without large prime factors.Acta Arith. 83 (1998), 331-361. Zbl 0994.11033, MR 1610553, 10.4064/aa-83-4-331-361
Reference: [2] Baker, R. C., Harman, G., Pintz, J.: The difference between consecutive primes II.Proc. Lond. Math. Soc. (3) 83 (2001), 532-562. Zbl 1016.11037, MR 1851081, 10.1112/plms/83.3.532
Reference: [3] Chang, M.-C.: Burgess inequality in $\mathbb{F}_{p^2}$.Geom. Funct. Anal. 19 (2009), 1001-1016. MR 2570312, 10.1007/s00039-009-0031-5
Reference: [4] Davenport, H.: Multiplicative Number Theory (2nd rev. ed.).Graduate Texts in Mathematics 74 Springer, New York (1980). MR 0606931
Reference: [5] Eichenauer-Herrmann, J., Grothe, H., Lehn, J.: On the period length of pseudorandom vector sequences generated by matrix generators.Math. Comput. 52 (1989), 145-148. Zbl 0657.65008, MR 0946603, 10.1090/S0025-5718-1989-0946603-0
Reference: [6] Friedlander, J., Iwaniec, H.: Opera de Cribro.American Mathematical Society Colloquium Publications 57 Providence (2010). Zbl 1226.11099, MR 2647984, 10.1090/coll/057
Reference: [7] Gallagher, P. X.: A larger sieve.Acta Arith. 18 (1971), 77-81. Zbl 0231.10028, MR 0291120, 10.4064/aa-18-1-77-81
Reference: [8] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers (6th rev. ed.).Oxford University Press, Oxford (2008). MR 2445243
Reference: [9] Harman, G.: Prime-Detecting Sieves.London Mathematical Society Monographs Series 33 Princeton University Press, Princeton (2007). Zbl 1220.11118, MR 2331072
Reference: [10] Huxley, M. N.: On the difference between consecutive primes.Invent. Math. 15 (1972), 164-170. Zbl 0241.10026, MR 0292774, 10.1007/BF01418933
Reference: [11] Iwaniec, H., Kowalski, E.: Analytic Number Theory.American Mathematical Society Colloquium Publications 53 Providence (2004). Zbl 1059.11001, MR 2061214
Reference: [12] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences.Pure and Applied Mathematics John Wiley & Sons, New York (1974). Zbl 0281.10001, MR 0419394
Reference: [13] Kurlberg, P.: On the order of unimodular matrices modulo integers.Acta Arith. 110 (2003), 141-151. Zbl 1030.11048, MR 2008081, 10.4064/aa110-2-4
Reference: [14] Kurlberg, P., Rosenzweig, L., Rudnick, Z.: Matrix elements for the quantum cat map: fluctuations in short windows.Nonlinearity 20 (2007), 2289-2304. Zbl 1187.81131, MR 2356110, 10.1088/0951-7715/20/10/001
Reference: [15] Kurlberg, P., Rudnick, Z.: On quantum ergodicity for linear maps of the torus.Commun. Math. Phys. 222 (2001), 201-227. Zbl 1042.81026, MR 1853869, 10.1007/s002200100501
Reference: [16] L'Ecuyer, P.: Uniform random number generation.Ann. Oper. Res. 53 (1994), 77-120. Zbl 0843.65004, MR 1310607, 10.1007/BF02136827
Reference: [17] Li, W. C. W.: Number Theory with Applications.Series on University Mathematics 7 World Scientific, River Edge (1996). MR 1390759
Reference: [18] Maier, H.: Primes in short intervals.Michigan Math. J. 32 (1985), 221-225. Zbl 0569.10023, MR 0783576, 10.1307/mmj/1029003189
Reference: [19] Mollin, R. A.: Advanced Number Theory with Applications.Discrete Mathematics and Its Applications CRC Press, Boca Raton (2010). Zbl 1200.11002, MR 2560324
Reference: [20] Montgomery, H. L.: Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis.CBMS Regional Conference Series in Mathematics 84 AMS, Providence (1994). Zbl 0814.11001, MR 1297543
Reference: [21] Montgomery, H. L., Vaughan, R. C.: The large sieve.Mathematika, Lond. 20 (1973), 119-134. Zbl 0296.10023, MR 0374060, 10.1112/S0025579300004708
Reference: [22] Niederreiter, H.: Statistical independence properties of pseudorandom vectors produced by matrix generators.J. Comput. Appl. Math. 31 (1990), 139-151. Zbl 0708.65007, MR 1068157, 10.1016/0377-0427(90)90345-Z
Reference: [23] Roskam, H.: A quadratic analogue of Artin's conjecture on primitive roots.J. Number Theory 81 (2000), 93-109. Zbl 1049.11125, MR 1743503, 10.1006/jnth.1999.2470
Reference: [24] Shoup, V.: Searching for primitive roots in finite fields.Math. Comput. 58 (1992), 369-380. Zbl 0747.11060, MR 1106981, 10.1090/S0025-5718-1992-1106981-9
Reference: [25] Stephens, P. J.: An average result for Artin's conjecture.Mathematika, Lond. 16 (1969), 178-188. Zbl 0186.08402, MR 0498449, 10.1112/S0025579300008159
.

Files

Files Size Format View
CzechMathJ_64-2014-3_14.pdf 303.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo