[1] Chmúrny, I., Minárová, M.: Risk of Mould Growth in Buildings. Slovak Journal of Civil Engineering 2/2004 (2004), 1–7.
[2] Halahyja, M., Chmúrny, I., Sternová, Z.: Thermal Engineering of Buildings. Thermal Protection of Buildings. Jaga Group, Bratislava, 1998.
[3] Hagentoft, C. E.: Introduction to Building Physics. Studentlitteratur, Sweden, 2001.
[4] Hens, H.: Impact of hygric inertia on indoor climate: simple models. In: Paper IEA, IEA-EXCO ECBCS, Annex 41, Moist-Eng, Copenhagen, 2008.
[5] Hens, H.: Common exercise X, second step. Paper IEA, IEA-EXCO ECBCS, Annex 41, Moist-Eng, Kyoto meeting, 2005.
[6] Hens, H.: Building Physics – Heat, Air and Moisture. Ernst & Sohn (Wiley Comp.), Berlin, 2012.
[7] Koronthályová, O., Mihálka, P., Matiašovský, P.: Model for Whole HAM-Transfer Simulation in Room. Paper IEA, IEA-EXCO ECBCS, Annex 41, report A41-T1-S1-04-1, 2008.
[8] Koronhályová, O.: Vplyv hygroskopických vlastností vnútorných povrchov na denné chody relatívnej vlhkosti vnútorného vzduchu. In: Zborník prednášok Vnútorná klíma budov, SSTP 0538 2005, Štrbské Pleso, 73–78.
[9] Minárová, M.: Deformed temperature fields. In: Proceedings from PRASTAN Conference, 2004, 153–160.
[10] Minárová, M.: Deformované teplotné polia a riziko vzniku hygienických problémov. Edícia vedeckých prác Slovenská technická univerzita, Vyd. STU, Bratislava, 2005.
[11] Quin, M., Belarbi, R., Mokhtar, A., Seigneurin, A.: An analytical method to calculate the coupled heat and moisture transfer in builfing materials. Internal Communication in Heat and Mass Transfer 33 (2006), 39–48.
[12] Report Annex XIV, Volume 1 – Sourcebook. IEA – Energy Conservation in building and Community Systems, 1991.