Previous |  Up |  Next

Article

Keywords:
curvature; evolutes; isoperimetric deficit; Gauss-Bonnet
Summary:
We relate the total curvature and the isoperimetric deficit of a curve $\gamma $ in a two-dimensional space of constant curvature with the area enclosed by the evolute of $\gamma $. We provide also a Gauss-Bonnet theorem for a special class of evolutes.
References:
[1] Bruna, J., Cufí, J.: Complex Analysis. European Mathematical Society, 2013. MR 3076702
[2] Chern, S. S.: Curves and surfaces in Euclidean space. Studies in Global Geometry and Analysis 4 (1967), 16–56. MR 0212744
[3] Escudero, C. A., Reventós, A.: An interesting property of the evolute. Amer. Math. Monthly 114 (7) (2007), 623–628. MR 2341325 | Zbl 1144.53007
[4] Escudero, C. A., Reventós, A., Solanes, G.: Focal sets in two-dimensional space forms. Pacific J. Math. 233 (2007), 309–320. DOI 10.2140/pjm.2007.233.309 | MR 2366378 | Zbl 1152.53063
[5] Fenchel, W.: On the differential geometry of closed space curves. Bull. Amer. Math. Soc. (N.S.) 57 (1951), 44–54. DOI 10.1090/S0002-9904-1951-09440-9 | MR 0040040 | Zbl 0042.40006
[6] Hurwitz, A.: Sur quelques applications géométriques des séries de Fourier. Annales scientifiques de l' É.N.S. 19 (1902), 357–408. MR 1509016
[7] Martinez-Maure, Y.: Sommets et normales concourantes des courbes convexes de largeur constante et singularités des hérissons. Arch. Math. 79 (2002), 489–498. DOI 10.1007/BF02638386 | MR 1967267 | Zbl 1025.52004
[9] Santaló, L. A.: Integral Geometry and Geometric Probability. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976, With a foreword by Mark Kac, Encyclopedia of Mathematics and its Applications, Vol. 1. MR 0433364 | Zbl 0342.53049
[10] Spivak, M.: A Comprehensive Introduction to Differential Geometry. Publish or Perish, Inc. Berkeley, 1979, 2a ed., 5 v. Zbl 0439.53005
Partner of
EuDML logo