Article
Keywords:
curvature; evolutes; isoperimetric deficit; Gauss-Bonnet
Summary:
We relate the total curvature and the isoperimetric deficit of a curve $\gamma $ in a two-dimensional space of constant curvature with the area enclosed by the evolute of $\gamma $. We provide also a Gauss-Bonnet theorem for a special class of evolutes.
References:
[1] Bruna, J., Cufí, J.:
Complex Analysis. European Mathematical Society, 2013.
MR 3076702
[2] Chern, S. S.:
Curves and surfaces in Euclidean space. Studies in Global Geometry and Analysis 4 (1967), 16–56.
MR 0212744
[3] Escudero, C. A., Reventós, A.:
An interesting property of the evolute. Amer. Math. Monthly 114 (7) (2007), 623–628.
MR 2341325 |
Zbl 1144.53007
[6] Hurwitz, A.:
Sur quelques applications géométriques des séries de Fourier. Annales scientifiques de l' É.N.S. 19 (1902), 357–408.
MR 1509016
[9] Santaló, L. A.:
Integral Geometry and Geometric Probability. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976, With a foreword by Mark Kac, Encyclopedia of Mathematics and its Applications, Vol. 1.
MR 0433364 |
Zbl 0342.53049
[10] Spivak, M.:
A Comprehensive Introduction to Differential Geometry. Publish or Perish, Inc. Berkeley, 1979, 2a ed., 5 v.
Zbl 0439.53005