Previous |  Up |  Next

Article

Keywords:
bicrossed product of Hopf algebras; Sweedler's Hopf algebra; Drinfel'd double
Summary:
We continue the study started recently by Agore, Bontea and Militaru in ``Classifying bicrossed products of Hopf algebras'' (2014), by describing and classifying all Hopf algebras $E$ that factorize through two Sweedler's Hopf algebras. Equivalently, we classify all bicrossed products $H_4 \bowtie H_4$. There are three steps in our approach. First, we explicitly describe the set of all matched pairs $(H_4, H_4, \triangleright , \triangleleft )$ by proving that, with the exception of the trivial pair, this set is parameterized by the ground field $k$. Then, for any $\lambda \in k$, we describe by generators and relations the associated bicrossed product, $\mathcal {H}_{16, \lambda }$. This is a $16$-dimensional, pointed, unimodular and non-semisimple Hopf algebra. A Hopf algebra $E$ factorizes through $H_4$ and $H_4$ if and only if $ E \cong H_4 \otimes H_4$ or $E \cong {\mathcal H}_{16, \lambda }$. In the last step we classify these quantum groups by proving that there are only three isomorphism classes represented by: $H_4 \otimes H_4$, ${\mathcal H}_{16, 0}$ and ${\mathcal H}_{16, 1} \cong D(H_4)$, the Drinfel'd double of $H_4$. The automorphism group of these objects is also computed: in particular, we prove that ${\rm Aut}_{\rm Hopf}( D(H_4))$ is isomorphic to a semidirect product of groups, $k^{\times } \rtimes \mathbb {Z}_2$.
References:
[1] Agore, A. L., Bontea, C. G., Militaru, G.: Classifying bicrossed products of Hopf algebras. Algebr. Represent. Theory 17 (2014), 227-264. DOI 10.1007/s10468-012-9396-5 | MR 3160722
[2] Andruskiewitsch, N., Devoto, J.: Extensions of Hopf algebras. St. Petersbg. Math. J. 7 17-52 (1996), translation from Algebra Anal. 7 22-61 (1995). MR 1334152 | Zbl 0857.16032
[3] Andruskiewitsch, N., Schneider, H.-J.: Lifting of quantum linear spaces and pointed Hopf algebras of order $p^{3}$. J. Algebra 209 658-691 (1998). DOI 10.1006/jabr.1998.7643 | MR 1659895 | Zbl 0919.16027
[4] Andruskiewitsch, N., Schneider, H.-J.: Finite quantum groups and Cartan matrices. Adv. Math. 154 1-45 (2000). DOI 10.1006/aima.1999.1880 | MR 1780094 | Zbl 1007.16027
[5] Andruskiewitsch, N., Schneider, H.-J.: On the classification of finite-dimensional pointed Hopf algebras. Ann. Math. (2) 171 375-417 (2010). DOI 10.4007/annals.2010.171.375 | MR 2630042 | Zbl 1208.16028
[6] Caenepeel, S., Dăscălescu, S., Raianu, Ş.: Classifying pointed Hopf algebras of dimension 16. Commun. Algebra 28 541-568 (2000). DOI 10.1080/00927870008826843 | MR 1736746 | Zbl 0952.16030
[7] Doi, Y., Takeuchi, M.: Quaternion algebras and Hopf crossed products. Commun. Algebra 23 3291-3325 (1995). DOI 10.1080/00927879508825403 | MR 1335303 | Zbl 0833.16036
[8] García, G. A., Vay, C.: Hopf algebras of dimension 16. Algebr. Represent. Theory 13 383-405 (2010). DOI 10.1007/s10468-009-9128-7 | MR 2660853 | Zbl 1204.16022
[9] Kassel, C.: Quantum Groups, Graduate Texts in Mathematics. Graduate Texts in Mathematics 155 Springer, New York (1995). MR 1321145
[10] Majid, S.: Physics for algebraists: non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130 17-64 (1990). DOI 10.1016/0021-8693(90)90099-A | MR 1045735 | Zbl 0694.16008
[11] Majid, S.: Foundations of Quantum Groups Theory. Cambridge University Press, Cambridge (1995).
[12] Majid, S.: More examples of bicrossproduct and double cross product Hopf algebras. Isr. J. Math. 72 133-148 (1990). DOI 10.1007/BF02764616 | MR 1098985 | Zbl 0725.17015
[13] Masuoka, A.: Cleft extensions for a Hopf algebra generated by a nearly primitive element. Commun. Algebra 22 4537-4559 (1994). DOI 10.1080/00927879408825086 | MR 1284344 | Zbl 0809.16046
[14] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Expanded version of ten authors lectures given at the CBMS Conference on Hopf algebras and their actions on rings, DePaul University in Chicago, USA, 1992. Regional Conference Series in Mathematics 82 AMS, Providence, RI (1993). MR 1243637 | Zbl 0793.16029
[15] Radford, D. E.: Minimal quasitriangular Hopf algebras. J. Algebra 157 285-315 (1993). DOI 10.1006/jabr.1993.1102 | MR 1220770 | Zbl 0787.16028
[16] Takeuchi, M.: Matched pairs of groups and bismash products of Hopf algebras. Commun. Algebra 9 841-882 (1981). DOI 10.1080/00927878108822621 | MR 0611561 | Zbl 0456.16011
Partner of
EuDML logo