Previous |  Up |  Next

Article

Keywords:
Hardy-Sobolev space; Hardy-Landau-Littlewood inequality; Hölder regularity; Cauchy problem; inverse problem; logarithmic estimate
Summary:
We prove some optimal logarithmic estimates in the Hardy space ${H}^{\infty }(G)$ with Hölder regularity, where $G$ is the open unit disk or an annular domain of $\mathbb {C}$. These estimates extend the results established by S. Chaabane and I. Feki in the Hardy-Sobolev space $H^{k,\infty }$ of the unit disk and those of I. Feki in the case of an annular domain. The proofs are based on a variant of Hardy-Landau-Littlewood inequality for Hölder functions. As an application of these estimates, we study the stability of both the Cauchy problem for the Laplace operator and the Robin inverse problem.
References:
[1] Baratchart, L., Leblond, J.: Harmonic identification and Hardy class trace on an arc of the circle. Optimisation et Contrôle. Proceedings of the Colloquium in Honor of Jean Céa's sixtieth birthday held in Sophia-Antipolis, 1992 J.-A. Désidéri Cépaduès Éditions Toulouse (1993), 17-29 French. MR 1284961 | Zbl 0922.93012
[2] Baratchart, L., Leblond, J., Partington, J. R.: Hardy approximation to $L^\infty$ functions on subsets of the circle. Constr. Approx. 12 (1996), 423-435. MR 1405007
[3] Baratchart, L., Zerner, M.: On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk. J. Comput. Appl. Math 46 (1993), 255-269. DOI 10.1016/0377-0427(93)90300-Z | MR 1222486
[4] Brézis, H.: Functional Analysis. Theory and Applications. Collection of Applied Mathematics for the Master's Degree Masson, Paris (1983), French. MR 0697382
[5] Chaabane, S., Feki, I.: Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty}$. C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. DOI 10.1016/j.crma.2009.07.018 | MR 2554565
[6] Chaabane, S., Fellah, I., Jaoua, M., Leblond, J.: Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems. Inverse Probl. 20 (2004), 47-59. MR 2044605 | Zbl 1055.35135
[7] Chaabane, S., Ferchichi, J., Kunisch, K.: Differentiability properties of the $L^{1}$-tracking functional and application to the Robin inverse problem. Inverse Probl. 20 (2004), 1083-1097. MR 2087981
[8] Chaabane, S., Jaoua, M.: Identification of Robin coefficients by the means of boundary measurements. Inverse Probl. 15 (1999), 1425-1438. MR 1733209 | Zbl 0943.35100
[9] Chaabane, S., Jaoua, M., Leblond, J.: Parameter identification for Laplace equation and approximation in Hardy classes. J. Inverse Ill-Posed Probl. 11 (2003), 33-57. DOI 10.1515/156939403322004928 | MR 1972169 | Zbl 1028.35163
[10] Chalendar, I., Partington, J. R.: Approximation problems and representations of Hardy spaces in circular domains. Stud. Math. 136 (1999), 255-269. MR 1724247 | Zbl 0952.30033
[11] Chevreau, B., Pearcy, C. M., Shields, A. L.: Finitely connected domains $G$, representations of $H^{\infty}(G)$, and invariant subspaces. J. Oper. Theory 6 (1981), 375-405. MR 0643698
[12] Duren, P. L.: Theory of $H^p$ Spaces. Pure and Applied Mathematics 38 Academic Press, New York (1970). MR 0268655
[13] Feki, I.: Estimates in the Hardy-Sobolev space of the annulus and stability result. Czech. Math. J. 63 (2013), 481-495. DOI 10.1007/s10587-013-0032-2 | MR 3073973 | Zbl 1289.30231
[14] Feki, I., Nfata, H., Wielonsky, F.: Optimal logarithmic estimates in the Hardy-Sobolev space of the disk and stability results. J. Math. Anal. Appl. 395 (2012), 366-375. DOI 10.1016/j.jmaa.2012.05.055 | MR 2943628 | Zbl 1250.30051
[15] Gagliardo, E.: Proprietà di alcune classi di funzioni più variabili. Ricerche Mat. 7 (1958), 102-137 Italian. MR 0102740
[16] Hardy, G. H., Landau, E., Littlewood, J. E.: Some inequalities satisfied by the integrals or derivatives of real or analytic functions. Math. Z. 39 (1935), 677-695. DOI 10.1007/BF01201386 | MR 1545530 | Zbl 0011.06102
[17] Kwong, M. K., Zettl, A.: Norm Inequalities for Derivatives and Differences. Lecture Notes in Mathematics 1536 Springer, Berlin (1992). DOI 10.1007/BFb0090864 | MR 1223546 | Zbl 0925.26011
[18] Leblond, L., Mahjoub, M., Partington, J. R.: Analytic extensions and Cauchy-type inverse problems on annular domains: stability results. J. Inverse Ill-Posed Probl. 14 (2006), 189-204. DOI 10.1515/156939406777571049 | MR 2242304 | Zbl 1111.35121
[19] Marangunić, L. J., Pečarić, J.: On Landau type inequalities for functions with Hölder continuous derivatives. JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 5 (2004), Paper No. 72, 5 pages. MR 2084881 | Zbl 1060.26018
[20] Meftahi, H., Wielonsky, F.: Growth estimates in the Hardy-Sobolev space of an annular domain with applications. J. Math. Anal. Appl. 358 (2009), 98-109. DOI 10.1016/j.jmaa.2009.04.040 | MR 2527584 | Zbl 1176.46029
[21] Mitrinović, D. S., Pečarić, J. E., Fink, A. M.: Inequalities Involving Functions and Their Integrals and Derivatives. Mathematics and Its Applications: East European Series 53 Kluwer Academic Publishers, Dordrecht (1991). MR 1190927 | Zbl 0744.26011
[22] Niculescu, C. P., Buşe, C.: The Hardy-Landau-Littlewood inequalities with less smoothness. JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 4 (2003), Paper No. 51, 8 pages. MR 2044400 | Zbl 1059.26010
[23] Nirenberg, L.: An extended interpolation inequality. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. MR 0208360 | Zbl 0163.29905
[24] Rudin, W.: Analytic functions of class $H^p$. Trans. Am. Math. Soc. 78 (1955), 46-66. MR 0067993
[25] Sarason, D.: The $H^p$ Spaces of An Annulus. Memoirs of the American Mathematical Society 56 AMS, Providence (1965). MR 0188824
[26] Wang, H.-C.: Real Hardy spaces of an annulus. Bull. Aust. Math. Soc. 27 (1983), 91-105. DOI 10.1017/S0004972700011515 | MR 0696647 | Zbl 0512.42023
Partner of
EuDML logo