[2] Brezzi, F., Fortin, M.:
Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics 15 Springer, New York (1991).
MR 1115205 |
Zbl 0788.73002
[4] Bulíček, M., Gwiazda, P., Málek, J., Świerczewska-Gwiazda, A.:
On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 44 2756-2801 (2012).
DOI 10.1137/110830289 |
MR 3023393 |
Zbl 1256.35074
[6] Fujita, H.:
A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions. RIMS Kokyuroku 888 199-216 (1994).
MR 1338892 |
Zbl 0939.76527
[8] Galdi, G. P.:
An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. 1: Linearized Steady Problems. Springer Tracts in Natural Philosophy 38 Springer, New York (1994).
MR 1284206
[9] Haslinger, J., Mäkinen, R. A. E.:
Introduction to Shape Optimization: Theory, Approximation, and Computation. Advances in Design and Control 7. SIAM Society for Industrial and Applied Mathematics Philadelphia (2003).
MR 1969772 |
Zbl 1020.74001
[10] Haslinger, J., Outrata, J. V., Pathó, R.:
Shape optimization in 2{D} contact problems with given friction and a solution-dependent coefficient of friction. Set-Valued Var. Anal. 20 31-59 (2012).
MR 2886504 |
Zbl 1242.49088
[11] Hlaváček, I., Mäkinen, R.:
On the numerical solution of axisymmetric domain optimization problems. Appl. Math., Praha 36 284-304 (1991).
MR 1113952 |
Zbl 0745.65044
[12] Liakos, A.:
Weak imposition of boundary conditions in the Stokes and Navier-Stokes equation. PhD thesis, University of Pittsburgh (1999).
MR 2700238
[13] Málek, J., Rajagopal, K. R.:
Mathematical issues concerning the Navier-Stokes equations and some of its generalizations. C. M. Dafermos Evolutionary Equations. Vol. II Handbook of Differential Equations Elsevier/North-Holland, Amsterdam (2005), 371-459.
MR 2182831 |
Zbl 1095.35027
[14] Navier, C. L.: Mémoire sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Paris 6 389-416 (1823).
[15] Saito, N.:
On the Stokes equation with the leak and slip boundary conditions of friction type: regularity of solutions. Publ. Res. Inst. Math. Sci. 40 345-383 (2004), errata ibid. 48 475-476 (2012).
DOI 10.2977/prims/1145475807 |
MR 2049639 |
Zbl 1244.35061