[1] Aghayan, S. A., Sardari, D., Mahdavi, S. R. M., Zahmatkesh, M. H.:
An inverse problem of temperature optimization in hyperthermia by controlling the overall heat transfer coefficient. Hindawi Publishing Corporation J. Appl. Math. 2013 (2013), 1-9.
MR 3090615
[2] Curtain, R. F., Zwart, H.:
An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag 21 of Text in Applied Mathematics, 1995.
MR 1351248 |
Zbl 0839.93001
[3] Cheng, K. S., Stakhursky, V., Craciunescu, O. I., Stauffer, P., Dewhirst, M., Das, S. K.:
Fast temperature optimization of multi-source hyperthermia applicators with reduced-order modelling of 'virtual sources'. Physics in Medicine and Biology 53 (2008), 6, 1619-1635.
DOI 10.1088/0031-9155/53/6/008
[4] Deng, Z. S., Liu, J.: Analytical Solutions to 3D Bioheat Transfer Problems with or without Phase Change. In: Heat Transfer Phenomena and Applications (S. N. Kazi, ed.), Chapter 8, InTech, 2012.
[5] Deng, Z. S., Liu, J.:
Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies. J. Biomech. Eng. 124 (2002), 638-649.
DOI 10.1115/1.1516810
[6] Dhar, R., Dhar, P., Dhar, R.:
Problem on optimal distribution of induced microwave by heating probe at tumour site in hyperthermia. Adv. Model. Optim. 13 (2011), 1, 39-48.
MR 2889921
[7] Dhar, P., Dhar, R., Dhar, R.: An optimal control problem on temperature distribution in tissue by induced microwave. Adv. Appl. Math. Biosciences 2 (2011), 1, 27-38.
[10] Heidari, H., Malek, A.:
Optimal boundary control for hyperdiffusion equation. Kybernetika 46 (2010), 5, 907-925.
MR 2778921 |
Zbl 1206.35138
[11] Heidari, H., Zwart, H., Malek, A.: Controllability and Stability of 3D Heat Conduction Equation in a Submicroscale Thin Film. Department of Applied Mathematics, University of Twente, Enschede 2010, pp. 1-21.
[13] Loulou, T., Scott, E. P.:
Thermal dose optimization in hyperthermia treatments by using the conjugate gradient method. Numer. Heat Transfer, Part A 42 (2002), 7, 661-683.
DOI 10.1080/10407780290059756
[14] Malek, A., Bojdi, Z., Golbarg, P.:
Solving fully 3D microscale dual phase lag problem using mixed-collocation, finite difference discretization. J. Heat Transfer 134 (2012), 9, 094501-094506.
DOI 10.1115/1.4006271
[15] Malek, A., Nataj, R. Ebrahim, Yazdanpanah, M. J.:
Efficient algorithm to solve optimal boundary control problem for Burgers' equation. Kybernetika 48 (2012), 6, 1250-1265.
MR 3052884
[17] Momeni-Masuleh, S. H., Malek, A.:
Hybrid pseudo spectral-finite difference method for solving a 3D heat conduction equation in a submicroscale thin film. Numer. Methods Partial Differential Equations 23 (2007), 5, 1139-1148.
DOI 10.1002/num.20214 |
MR 2340665