Previous |  Up |  Next

Article

Keywords:
Eulerian lattices; 0-distributive lattices; pseudo-0-distributive lattices; super-0-distributive lattices
Summary:
In this paper, we prove that Eulerian lattices satisfying some weaker conditions for lattices or some weaker conditions for 0-distributive lattices become Boolean.
References:
[1] Balasubramani P.: Stone topologies of the set of prime filters of a $0$-distributive lattice. Indian J. Pure Appl. Math. 35 (2004), no. 2, 149–158. MR 2040729
[2] Bayer M., Billera J.: Counting chains and faces in polytopes and posets. Contemporary Mathematics 34 (1984), 207-252. DOI 10.1090/conm/034/777703
[3] Chajda I., Radeleczki S.: $0$-conditions and tolerance schemes. Acta Math. Univ. Comenian. 72 (2003), no. 2, 177–184. MR 2040261 | Zbl 1087.08002
[4] Crawley P., Dilworth R.P.: Algebraic Theory of Lattices. Prentice-Hall, Inc., Englewod. Cliffs, New Jersey, 1973. Zbl 0494.06001
[5] Davey B.A., Priestley H.A.: Introduction to Lattices and Order. Second Edition, Cambridge University Press, Cambridge, 2002. MR 1902334 | Zbl 1002.06001
[6] Gragg K.M., Kung J.P.S.: Consistent dually semimodular lattices. J. Combin. Theory Ser. A 60 (1992), 246–263. DOI 10.1016/0097-3165(92)90006-G | MR 1168156 | Zbl 0822.06007
[7] Grätzer G.: General Lattice Theory. Birkhäuser, Basel, 1978. MR 0504338
[8] Grünbaum B.: Convex Polytopes. Interscience, London-New York, 1967. MR 0226496 | Zbl 1033.52001
[9] Pawar Y.S.: $0$-$1$-distributive lattices. Indian J. Pure Appl. Math. 24 (1993), no. 3, 173–178. MR 1210389 | Zbl 0765.06015
[10] Mckenzie R.N., Mcnulty G.E., Tayler W.F.: Algebras, Lattices, Varieties, Vol I. Wardswoth and Brooks/Cole, Monterey, California, 1987.
[11] Rota G.C.: On the foundations of combinatorial theory I. Theory of Möbius functions. Z. Wahrschainlichkeitstheorie und Verw. Gebiete 2 (1964), 340-368. DOI 10.1007/BF00531932 | MR 0174487 | Zbl 0121.02406
[12] Santhi V. K.: Topics in Commutative Algebra. Ph.D. thesis, Madurai Kamaraj University, 1992.
[13] Subbarayan R.: Lattice Theory. Ph.D thesis, Bharathidasan University, 2008.
[14] Stanley R.P.: Some aspects of groups acting on finite posets. J. Combin. Theory Ser. A 32 (1982), 131–161. DOI 10.1016/0097-3165(82)90017-6 | MR 0654618 | Zbl 0496.06001
[15] Stanley R.P.: Enumerative Combinatorics, Vol. 1. Wordsworth and Brooks/Cole, Monterey, CA, 1986. DOI 10.1007/978-1-4615-9763-6 | Zbl 1247.05003
[16] Stanley R.P.: Supersolvable lattices. Algebra Universalis 4 (1974), 361–371. MR 0354473 | Zbl 0256.06002
[17] Varlet J.C.: A generalization of the notion of pseudo-complimentedness. Bull. Soc. Roy. Sci. Liège, 37 (1968), 149–158. MR 0228390
[18] Vethamanickam A.: Topics in Universal Algebra. Ph.D. thesis, Madurai Kamaraj University, 1994.
[19] Vethamanickam A., Subbarayan R.: Some simple extensions of Eulerian lattices. Acta Math. Univ. Comenianae 79 (2010), no. 1, 47–54. MR 2684207 | Zbl 1212.06007
[20] Walendziak A.: On consistent lattices. Acta Sci. Math. (Szeged) 59 (1994), 49–52. MR 1285428 | Zbl 0803.06006
Partner of
EuDML logo