Previous |  Up |  Next

Article

Keywords:
weakly-supplemented subgroup; $p$-nilpotent group; supersolvable group
Summary:
A subgroup $H$ of a finite group $G$ is weakly-supplemented in $G$ if there exists a proper subgroup $K$ of $G$ such that $G=HK$. In the paper it is proved that a finite group $G$ is $p$-nilpotent provided $p$ is the smallest prime number dividing the order of $G$ and every minimal subgroup of $P\cap G'$ is weakly-supplemented in $N_{G}(P),$ where $P$ is a Sylow $p$-subgroup of $G$. As applications, some interesting results with weakly-supplemented minimal subgroups of $P\cap G'$ are obtained.
References:
[1] Arad, Z., Ward, M. B.: New criteria for the solvability of finite groups. J. Algebra 77 (1982), 234-246. DOI 10.1016/0021-8693(82)90288-5 | MR 0665175 | Zbl 0486.20018
[2] Asaad, M., Ramadan, M., Shaalan, A.: Influence of $\pi$-quasinormality on maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group. Arch. Math. 56 (1991), 521-527. DOI 10.1007/BF01246766 | MR 1106492 | Zbl 0738.20026
[3] Ballester-Bolinches, A., Guo, X.: On complemented subgroups of finite groups. Arch. Math. 72 (1999), 161-166. DOI 10.1007/s000130050317 | MR 1671273 | Zbl 0929.20015
[4] Doerk, K.: Minimal nicht überauflösbare, endliche Gruppen. German Math. Z. 91 (1966), 198-205. DOI 10.1007/BF01312426 | MR 0191962 | Zbl 0135.05401
[5] Hall, P.: A characteristic property of soluble groups. J. Lond. Math. Soc. 12 (1937), 188-200. MR 1575073 | Zbl 0016.39204
[6] Hall, P.: Complemented groups. J. Lond. Math. Soc. 12 (1937), 201-204. DOI 10.1112/jlms/s1-12.2.201 | MR 1575074 | Zbl 0016.39301
[7] Huppert, B.: Endliche Gruppen I. German Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen 134 Springer, Berlin (1967). DOI 10.1007/978-3-642-64981-3 | MR 0224703 | Zbl 0217.07201
[8] Kang, P.: Minimal subgroups and the structure of finite groups. Ric. Mat. 62 (2013), 91-95. DOI 10.1007/s11587-012-0142-4 | MR 3057386
[9] Li, D., Guo, X.: The influence of $c$-normality of subgroups on the structure of finite groups. II. Commun. Algebra 26 (1998), 1913-1922. DOI 10.1080/00927879808826248 | MR 1621704 | Zbl 0906.20012
[10] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80 Springer, New York (1993). MR 1261639
Partner of
EuDML logo