Previous |  Up |  Next

Article

Keywords:
local cohomology module; weakly Laskerian module; ${\mathfrak a}$-weakly Laskerian module; associated prime
Summary:
Let $R$ be a commutative Noetherian ring and ${\mathfrak a}$ an ideal of $R$. We introduce the concept of ${\mathfrak a}$-weakly Laskerian $R$-modules, and we show that if $M$ is an ${\mathfrak a}$-weakly Laskerian $R$-module and $s$ is a non-negative integer such that ${\rm Ext}^j_R(R/{\mathfrak a}, H^i_{{\mathfrak a}}(M))$ is ${\mathfrak a}$-weakly Laskerian for all $i<s$ and all $j$, then for any ${\mathfrak a}$-weakly Laskerian submodule $X$ of $H^s_{{\mathfrak a}}(M)$, the $R$-module ${\rm Hom}_R(R/{\mathfrak a},H^s_{{\mathfrak a}}(M)/X)$ is ${\mathfrak a}$-weakly Laskerian. In particular, the set of associated primes of $H^s_{\mathfrak a}(M)/X$ is finite. As a consequence, it follows that if $M$ is a finitely generated $R$-module and $N$ is an ${\mathfrak a}$-weakly Laskerian $R$-module such that $ H^i_{{\mathfrak a}}(N)$ is ${\mathfrak a}$-weakly Laskerian for all $i<s$, then the set of associated primes of $H^s_{\mathfrak a}(M, N)$ is finite. This generalizes the main result of S. Sohrabi Laleh, M. Y. Sadeghi, and M. Hanifi Mostaghim (2012).
References:
[1] Azami, J., Naghipour, R., Vakili, B.: Finiteness properties of local cohomology modules for ${\mathfrak a}$-minimax modules. Proc. Am. Math. Soc. 137 (2009), 439-448. DOI 10.1090/S0002-9939-08-09530-0 | MR 2448562
[2] Bijan-Zadeh, M. H.: A common generalization of local cohomology theories. Glasg. Math. J. 21 (1980), 173-181. DOI 10.1017/S0017089500004158 | MR 0582127 | Zbl 0438.13009
[3] Borna, K., Sahandi, P., Yassemi, S.: Artinian local cohomology modules. Can. Math. Bull. 50 (2007), 598-602. DOI 10.4153/CMB-2007-058-8 | MR 2364209 | Zbl 1140.13016
[4] Brodmann, M. P., Lashgari, F. A.: A finiteness result for associated primes of local cohomology modules. Proc. Am. Math. Soc. 128 (2000), 2851-2853. DOI 10.1090/S0002-9939-00-05328-4 | MR 1664309 | Zbl 0955.13007
[5] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60 Cambridge University Press, Cambridge (1998). MR 1613627 | Zbl 0903.13006
[6] Dibaei, M. T., Yassemi, S.: Associated primes and cofiniteness of local cohomology modules. Manuscr. Math. 117 (2005), 199-205. DOI 10.1007/s00229-005-0538-5 | MR 2150481 | Zbl 1105.13016
[7] Divaani-Aazar, K., Esmkhani, M. A.: Artinianness of local cohomology modules of {ZD}-modules. Commun. Algebra 33 (2005), 2857-2863. DOI 10.1081/AGB-200063983 | MR 2159511 | Zbl 1090.13012
[8] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules. Proc. Am. Math. Soc. 133 (2005), 655-660. DOI 10.1090/S0002-9939-04-07728-7 | MR 2113911 | Zbl 1103.13010
[9] Herzog, J.: Komplexe, Auflösungen und Dualität in der lokalen Algebra. Habilitationsschrift, Universität Regensburg (1970), German.
[10] Huneke, C.: Problems on local cohomology modules. Free Resolution in Commutative Algebra and Algebraic Geometry (Sundance, UT, 1990), Res. Notes Math., 2 Jones and Bartlett, Boston, MA (1992), 93-108. MR 1165320
[11] Katzman, M.: An example of an infinite set of associated primes of local cohomology module. J. Algebra 252 (2002), 161-166. DOI 10.1016/S0021-8693(02)00032-7 | MR 1922391
[12] Khashyarmanesh, K.: On the finiteness properties of extension and torsion functors of local cohomology modules. Proc. Am. Math. Soc. (electronic) 135 (2007), 1319-1327. DOI 10.1090/S0002-9939-06-08664-3 | MR 2276640 | Zbl 1111.13016
[13] Khashyarmanesh, K., Salarian, S.: On the associated primes of local cohomology modules. Commun. Algebra 27 (1999), 6191-6198. DOI 10.1080/00927879908826816 | MR 1726302 | Zbl 0940.13013
[14] Laleh, S. S., Sadeghi, M. Y., Mostaghim, M. H.: Some results on the cofiniteness of local cohomology modules. Czech. Math. J. 62 (2012), 105-110. DOI 10.1007/s10587-012-0019-4 | MR 2899737 | Zbl 1249.13012
[15] Mafi, A.: A generalization of the finiteness problem in local cohomology. Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 159-164. DOI 10.1007/s12044-009-0016-1 | MR 2526419 | Zbl 1171.13011
[16] Quy, P. H.: On the finiteness of associated primes of local cohomology modules. Proc. Am. Math. Soc. 138 (2010), 1965-1968. DOI 10.1090/S0002-9939-10-10235-4 | MR 2596030 | Zbl 1190.13010
[17] Singh, A. K.: $p$-torsion elements in local cohomology modules. Math. Res. Lett. 7 (2000), 165-176. DOI 10.4310/MRL.2000.v7.n2.a3 | MR 1764314 | Zbl 0965.13013
[18] Zöschinger, H.: Minimax modules. German J. Algebra 102 (1986), 1-32. DOI 10.1016/0021-8693(86)90125-0 | MR 0853228 | Zbl 0593.13012
Partner of
EuDML logo