[1] Agapie, A.:
Modelling genetic algorithms: From Markov chains to dependence with complete connections. Lect. Notes Comput. Sci. 1498 (1998), 3-12.
DOI 10.1007/BFb0056844
[4] Agapie, A., Agapie, M., Rudolph, G., Zbaganu, G.:
Convergence of evolutionary algorithms on the n-dimensional continuous space. IEEE Trans. Cybern. 43 (2013), 1462-1472.
DOI 10.1109/TCYB.2013.2257748
[6] Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991).
[7] Mitavskiy, B., Rowe, J., Wright, A. H., Schmitt, L.:
Quotients of Markov chains and asymptotic properties of the stationary distribution of the Markov chain associated to an evolutionary algorithm. Genet. Program. Evolv. Mach. 9 (2008), 109-123.
DOI 10.1007/s10710-007-9038-6
[8] Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovać, Hamburg (1997).
[9] Rudolph, G.:
Stochastic convergence. Handbook of Natural Computing G. Rozenberg, T. H. W. Bäck, J. N. Kok Springer, Berlin (2012).
DOI 10.1007/978-3-540-92910-9_27
[10] Syswerda, G.: A study of reproduction in generational and steady state genetic algorithms. Foundations of Genetic Algorithms San Mateo, Morgan Kaufman, San Francisco, 1991 94-101.
[11] Vose, M. D.:
The Simple Genetic Algorithm. Foundations and Theory. MIT Press Cambridge (1999).
MR 1713436 |
Zbl 0952.65048
[12] Whitley, D.: The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. Proceedings of the Third International Conference on Genetic Algorithms Morgan Kaufman San Francisco (1989), 116-123.
[13] Wright, A. H., Rowe, J.:
Continuous dynamical system models of steady-state genetic algorithms. Foundations of Genetic Algorithms---6 Proc. FOGA-6, Morgan Kaufmann Publishers, Orlando (2002), 209-225.
Zbl 0987.68094