Previous |  Up |  Next

Article

Title: Existence and sharp asymptotic behavior of positive decreasing solutions of a class [4pt] of differential systems with power-type nonlinearities (English)
Author: Jaroš, Jaroslav
Author: Takaŝi, Kusano
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 50
Issue: 3
Year: 2014
Pages: 131-150
Summary lang: English
.
Category: math
.
Summary: The system of nonlinear differential equations \begin{equation*} x^{\prime } + p_1(t)x^{\alpha _1} + q_1(t)y^{\beta _1} = 0\,, \qquad y^{\prime } + p_2(t)x^{\alpha _2} + q_2(t)y^{\beta _2} = 0\,, A \end{equation*} is under consideration, where $\alpha _i$ and $\beta _i$ are positive constants and $p_i(t)$ and $q_i(t)$ are positive continuous functions on $[a,\infty )$. There are three types of different asymptotic behavior at infinity of positive solutions $(x(t),y(t))$ of (). The aim of this paper is to establish criteria for the existence of solutions of these three types by means of fixed point techniques. Special emphasis is placed on those solutions with both components decreasing to zero as $t \rightarrow \infty $, which can be analyzed in detail in the framework of regular variation. (English)
Keyword: systems of nonlinear differential equations
Keyword: positive solutions
Keyword: asymptotic behavior
Keyword: regularly varying functions
MSC: 26A12
MSC: 34C11
idZBL: Zbl 06487002
idMR: MR3263656
DOI: 10.5817/AM2014-3-131
.
Date available: 2014-09-20T17:08:35Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143921
.
Reference: [1] Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation.Encyclopedia Math. Appl., Cambridge University Press, 1987. Zbl 0617.26001, MR 0898871
Reference: [2] Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations.D.C. Heath and Company, Boston, 1965. Zbl 0154.09301, MR 0190463
Reference: [3] Evtukhov, V.M., Vladova, E.S.: Asymptotic representations of solutions of essentially nonlinear cyclic systems of ordinary differential equations.Differential Equations 48 (2012), 630–646. Zbl 1271.34055, MR 3177196, 10.1134/S0012266112050023
Reference: [4] Haupt, O., Aumann, G.: Differential- und Integralrechnung.Walter de Gruyter & Co., Berlin, 1938.
Reference: [5] Jaroš, J., Kusano, T.: Existence and precise asymptotic behavior of strongly monotone solutions of systems of nonlinear differential equations.Differ. Equ. Appl. 5 (2013), 185–204. MR 3099987
Reference: [6] Jaroš, J., Kusano, T.: Slowly varying solutions of a class of first order systems of nonlinear differentialequations.Acta Math. Univ. Comenian. 82 (2013), 265–284. MR 3106802
Reference: [7] Jaroš, J., Kusano, T., Tanigawa, T.: Asymptotic analysis of positive solutions of a class of third order nonlinear differential equations in the framework of regular variation.Math. Nachr. 286 (2013), 205–223. Zbl 1269.34054, MR 3021476, 10.1002/mana.201100296
Reference: [8] Kusano, T., Manojlović, J.: Asymptotic behavior of positive solutions of sublinear differentialequations of Emden-Fowler type.Comput. Math. Appl. 62 (2011), 551–565. MR 2817892, 10.1016/j.camwa.2011.05.019
Reference: [9] Kusano, T., Manojlović, J.: Precise asymptotic behavior of solutions of the sublinear Emden-Fowlerdifferential equation.Appl. Math. Comput. 217 (2011), 4382–4396. MR 2745121, 10.1016/j.amc.2010.09.061
Reference: [10] Kusano, T., Manojlović, J.: Positive solutions of fourth order Emden-Fowler type differential equationsin the framework of regular variation.Appl. Math. Comput. 218 (2012), 6684–6701. MR 2880324, 10.1016/j.amc.2011.12.029
Reference: [11] Kusano, T., Manojlović, J.: Positive solutions of fourth order Thomas-Fermi type differential equationsin the framework of regular variation.Acta Appl. Math. 121 (2012), 81–103. MR 2966967, 10.1007/s10440-012-9691-5
Reference: [12] Kusano, T., Manojlović, J.: Complete asymptotic analysis of positive solutions of odd-order nonlinear differential equations.Lithuanian Math. J. 53 (2013), 40–62. MR 3038148, 10.1007/s10986-013-9192-x
Reference: [13] Kusano, T., Marić, V., Tanigawa, T.: An asymptotic analysis of positive solutions of generalized Thomas-Fermi differential equations – The sub-half-linear case.Nonlinear Anal. 75 (2012), 2474–2485. Zbl 1248.34075, MR 2870933
Reference: [14] Marić, V.: Regular Variation and Differential Equations.Lecture Notes in Math., vol. 1726, Springer-Verlag, Berlin, 2000. MR 1753584, 10.1007/BFb0103952
Reference: [15] Mirzov, J.D.: Asymptotic Properties of Solutions of Systems of Nonlinear Nonautonomous Ordinary Differential Equations.Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math., Mathematica, vol. 14, Masaryk University, Brno, 2004. Zbl 1154.34300, MR 2144761
Reference: [16] Seneta, E.: Regularly Varying Functions.Lecture Notes in Math., vol. 508, Springer Verlag, Berlin-Heidelberg, 1976. Zbl 0324.26002, MR 0453936
.

Files

Files Size Format View
ArchMathRetro_050-2014-3_1.pdf 553.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo