Previous |  Up |  Next

Article

Keywords:
degenerate elliptic equations; entropy solutions; weighted Sobolev spaces
Summary:
In this article, we prove the existence of entropy solutions for the Dirichlet problem $$ (P)\begin {cases} -\mathrm{div} [{\omega }(x){\cal A} (x,u,{\nabla }u)]=f(x)-\mathrm{div} (G),&\text {in }\Omega \\ u(x) = 0,&\text {on }{\partial \Omega } \end {cases} $$ where $\Omega $ is a bounded open set of $\real ^N$, $N\geq 2$, $f \in L^1(\Omega )$ and $G/{\omega } \in [L^{p'}(\Omega , \omega )]^N$.
References:
[1] Bélinan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vasquez, J.L.: An $L^1$ theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22, 2, 1995, 241-273, MR 1354907
[2] Boccardo, L., Murat, F., Puel, J.P.: Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl., 152, 1988, 183-196, MR 0980979
[3] Cavalheiro, A.C.: The solvability of Dirichlet problem for a class of degenerate elliptic equations with $L^1$-data. Applicable Analysis, 85, 8, 2006, 941-961, MR 2250779 | Zbl 1142.35042
[4] Cavalheiro, A.C.: Existence of solutions for some degenerate quasilinear elliptic equations. Le Matematiche, LXIII, II, 2008, 101-112, MR 2531653 | Zbl 1189.35124
[5] Piat, V. Chiadò, Cassano, F. Serra: Relaxation of degenerate variational integrals. Nonlinear Anal., 22, 1994, 409-429, DOI 10.1016/0362-546X(94)90165-1 | MR 1266369
[6] Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations. Comm. PDEs, 7, 1982, 77-116, DOI 10.1080/03605308208820218 | MR 0643158 | Zbl 0498.35042
[7] Folland, G.B.: Real Analysis. 1984, Wiley-Interscience, New York, MR 0767633 | Zbl 0549.28001
[8] Garcia-Cuerva, J., Francia, J.L. Rubio de: Weighted Norm Inequalities and Related Topics. 116, 1985, North-Holland Mathematics Studies, MR 0807149
[9] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. 1993, Oxford Math. Monographs, Clarendon Press, MR 1207810 | Zbl 0780.31001
[10] Kufner, A., John, O., Fučík, S.: Function Spaces. 1977, Noordhoof International Publishing, Leyden, MR 0482102
[11] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc., 165, 1972, 207-226, DOI 10.1090/S0002-9947-1972-0293384-6 | MR 0293384 | Zbl 0236.26016
[12] Stein, E.: Harmonic Analysis. 1993, Princeton University Press, MR 1232192 | Zbl 0821.42001
[13] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. 1986, Academic Press, San Diego, MR 0869816 | Zbl 0621.42001
[14] Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics. 1736, 2000, Springer-Verlag, MR 1774162
Partner of
EuDML logo