[1] Bélinan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vasquez, J.L.:
An $L^1$ theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22, 2, 1995, 241-273,
MR 1354907
[2] Boccardo, L., Murat, F., Puel, J.P.:
Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl., 152, 1988, 183-196,
MR 0980979
[3] Cavalheiro, A.C.:
The solvability of Dirichlet problem for a class of degenerate elliptic equations with $L^1$-data. Applicable Analysis, 85, 8, 2006, 941-961,
MR 2250779 |
Zbl 1142.35042
[4] Cavalheiro, A.C.:
Existence of solutions for some degenerate quasilinear elliptic equations. Le Matematiche, LXIII, II, 2008, 101-112,
MR 2531653 |
Zbl 1189.35124
[8] Garcia-Cuerva, J., Francia, J.L. Rubio de:
Weighted Norm Inequalities and Related Topics. 116, 1985, North-Holland Mathematics Studies,
MR 0807149
[9] Heinonen, J., Kilpeläinen, T., Martio, O.:
Nonlinear Potential Theory of Degenerate Elliptic Equations. 1993, Oxford Math. Monographs, Clarendon Press,
MR 1207810 |
Zbl 0780.31001
[10] Kufner, A., John, O., Fučík, S.:
Function Spaces. 1977, Noordhoof International Publishing, Leyden,
MR 0482102
[13] Torchinsky, A.:
Real-Variable Methods in Harmonic Analysis. 1986, Academic Press, San Diego,
MR 0869816 |
Zbl 0621.42001
[14] Turesson, B.O.:
Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics. 1736, 2000, Springer-Verlag,
MR 1774162