[2] Arazy, J., Upmeier, H.:
Invariant symbolic calculi and eigenvalues of invariant operators on symmetric domains. Function spaces, interpolation theory and related topics (Lund, 2000) 151--211. 2002, De Gruyter, Berlin,
MR 1943284
[3] Arazy, J., Upmeier, H.:
Weyl Calculus for Complex and Real Symmetric Domains, Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13, 3--4, 2002, 165-181,
MR 1984098
[5] Berceanu, S., Gheorghe, A.:
On the geometry of Siegel-Jacobi domains. Int. J. Geom. Methods Mod. Phys., 8, 2011, 1783-1798,
MR 2876095 |
Zbl 1250.22010
[6] Berezin, F.A.:
Quantization. Math. USSR Izv., 8, 5, 1974, 1109-1165,
Zbl 0312.53049
[9] Berndt, R., Schmidt, R.:
Elements of the representation theory of the Jacobi group, Progress in Mathematics 163. 1998, Birkhäuser Verlag, Basel,
MR 1634977
[10] Cahen, B.:
Berezin quantization for discrete series. Beiträge Algebra Geom., 51, 2010, 301-311,
MR 2682458
[12] Cahen, B.:
Stratonovich-Weyl correspondence for discrete series representations. Arch. Math. (Brno), 47, 2011, 41-58,
MR 2813546 |
Zbl 1240.22011
[14] Cahen, B.:
Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 52, 2013, 35-48,
MR 3202747 |
Zbl 1296.22007
[17] Figueroa, H., Gracia-Bondìa, J.M., Vàrilly, J.C.:
Moyal quantization with compact symmetry groups and noncommutative analysis. J. Math. Phys., 31, 1990, 2664-2671,
DOI 10.1063/1.528967 |
MR 1075750
[19] Gracia-Bondìa, J.M.:
Generalized Moyal quantization on homogeneous symplectic spaces, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), 93--114, Contemp. Math., 134. 1992, Amer. Math. Soc., Providence, RI,
MR 1187280
[20] Gracia-Bondìa, J.M., V¸rilly, J.C.:
The Moyal Representation for Spin. Ann. Physics, 190, 1989, 107-148,
MR 0994048
[21] Kirillov, A.A.:
Lectures on the Orbit Method, Graduate Studies in Mathematics, Vol. 64. 2004, American Mathematical Society, Providence, Rhode Island,
DOI 10.1090/gsm/064 |
MR 2069175
[22] Neeb, K-H.:
Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, Vol. 28. 2000, Walter de Gruyter, Berlin, New-York,
MR 1740617
[23] Nomura, T.:
Berezin Transforms and Group representations. J. Lie Theory, 8, 1998, 433-440,
MR 1650386 |
Zbl 0919.43008
[25] Peetre, J., Zhang, G.:
A weighted Plancherel formula III. The case of a hyperbolic matrix ball. Collect. Math., 43, 1992, 273-301,
MR 1252736
[26] Satake, I.:
Algebraic structures of symmetric domains. 1971, Iwanami Sho-ten, Tokyo and Princeton Univ. Press, Princeton, NJ,
MR 0591460
[27] Stratonovich, R.L.:
On distributions in representation space. Soviet Physics. JETP, 4, 1957, 891-898,
MR 0088173