[2] Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.:
Solvable Models in Quantum Mechanics. AMS Chelsea, Providence (2005).
MR 2105735 |
Zbl 1078.81003
[3] Albeverio, S., Koshmanenko, V., Kurasov, P., Nizhnik, L.:
On approximations of rank one $\mathcal{H}_{-2}$-perturbations. Proc. Amer. Math. Soc. 131 (2003), 1443-1452.
DOI 10.1090/S0002-9939-02-06694-7 |
MR 1949874
[4] Berkolaiko, G., Kuchment, P.:
Introduction to Quantum Graphs. Mathematical Surveys and Monographs 186 American Mathematical Society, Providence (2013).
MR 3013208
[5] Bollé, D., Gesztesy, F., Wilk, S. F. J.:
A complete treatment of low-energy scattering in one dimension. J. Oper. Theory 13 (1985), 3-32.
MR 0768299 |
Zbl 0567.47008
[7] Christiansen, P. L., Arnbak, H. C., Zolotaryuk, A. V., Ermakov, V. N., Gaididei, Y. B.:
On the existence of resonances in the transmission probability for interactions arising from derivatives of Dirac's delta function. J. Phys. A, Math. Gen. 36 (2003), 7589-7600.
DOI 10.1088/0305-4470/36/27/311 |
MR 2006513 |
Zbl 1047.81567
[10] Golovaty, Yu. D., Hryniv, R. O.:
Norm resolvent convergence of singularly scaled Schrö-dinger operators and $\delta'$-potentials. Proc. R. Soc. Edinb., Sect. A, Math. 143 (2013), 791-816.
MR 3082301
[11] Golovaty, Yu. D., Man'ko, S. S.:
Solvable models for the Schrödinger operators with $\delta'$-like potentials. Ukr. Math. Bulletin 6 (2009), 169-203.
MR 2768971
[13] Kurasov, P., Scrinzi, A., Elander, N.:
$\delta'$ potential arising in exterior complex scaling. Phys. Rev. A 49 (1994), 5095-5097.
DOI 10.1103/PhysRevA.49.5095
[15] Man'ko, S. S.:
Schrödinger operators on star graphs with singularly scaled potentials supported near the vertices. J. Math. Phys. 53 (2012), Article ID 123521, 13 pages.
DOI 10.1063/1.4769425 |
MR 3405911 |
Zbl 1278.81097