Previous |  Up |  Next

Article

Keywords:
Laplacian in tubes; Dirichlet boundary condition; Neumann boundary condition; eigenvalue asymptotics; dimension reduction; quantum waveguides; mean curvature
Summary:
We consider the Laplacian in a domain squeezed between two parallel hypersurfaces in Euclidean spaces of any dimension, subject to Dirichlet boundary conditions on one of the hypersurfaces and Neumann boundary conditions on the other. We derive two-term asymptotics for eigenvalues in the limit when the distance between the hypersurfaces tends to zero. The asymptotics are uniform and local in the sense that the coefficients depend only on the extremal points where the ratio of the area of the Neumann boundary to the Dirichlet one is locally the biggest.
References:
[1] Borisov, D., Freitas, P.: Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin planar domains. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009), 547-560. DOI 10.1016/j.anihpc.2007.12.001 | MR 2504043 | Zbl 1168.35401
[2] Borisov, D., Freitas, P.: Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin domains in $\mathbb{R}^d$. J. Funct. Anal. 258 (2010), 893-912. DOI 10.1016/j.jfa.2009.07.014 | MR 2558181
[3] Davies, E. B.: Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics 42 Cambridge University Press, Cambridge (1995). MR 1349825 | Zbl 0893.47004
[4] Freitas, P., Krejčiřík, D.: Instability results for the damped wave equation in unbounded domains. J. Differential Equations 211 (2005), 168-186. DOI 10.1016/j.jde.2004.06.006 | MR 2121113 | Zbl 1075.35018
[5] Friedlander, L., Solomyak, M.: On the spectrum of the Dirichlet Laplacian in a narrow infinite strip. Spectral Theory of Differential Operators American Mathematical Society, Translations Series 2, 225, Advances in the Mathematical Sciences 62 Providence, RI 103-116 (2008). MR 2509778 | Zbl 1170.35487
[6] Friedlander, L., Solomyak, M.: On the spectrum of the Dirichlet Laplacian in a narrow strip. Isr. J. Math. 170 (2009), 337-354. DOI 10.1007/s11856-009-0032-y | MR 2506330 | Zbl 1173.35090
[7] Krejčiřík, D.: Spectrum of the Laplacian in a narrow curved strip with combined Dirichlet and Neumann boundary conditions. ESAIM, Control Optim. Calc. Var. 15 (2009), 555-568. DOI 10.1051/cocv:2008035 | MR 2542572 | Zbl 1173.35618
[8] Krejčiřík, D., Raymond, N., Tušek, M.: The magnetic Laplacian in shrinking tubular neighbourhoods of hypersurfaces. J. Geom. Anal (to appear).
[9] Lampart, J., Teufel, S., Wachsmuth, J.: Effective Hamiltonians for thin Dirichlet tubes with varying cross-section. Mathematical Results in Quantum Physics Proceedings of the QMath11 Conference 2010, Czech Republic World Scientific, Hackensack (2011), 183-189. MR 2885171 | Zbl 1238.81100
[10] Schatzman, M.: On the eigenvalues of the Laplace operator on a thin set with Neumann boundary conditions. Appl. Anal. 61 (1996), 293-306. DOI 10.1080/00036819608840461 | MR 1618236 | Zbl 0865.35098
Partner of
EuDML logo