[2] Argyros, I. K.:
Convergence and Applications of Newton-Type Iterations. Springer New York (2008).
MR 2428779 |
Zbl 1153.65057
[5] Argyros, I. K., Cho, Y. J., Hilout, S.:
Numerical Methods for Equations and Its Applications. CRC Press Boca Raton (2012).
MR 2964315 |
Zbl 1254.65068
[6] Argyros, I. K., Hilout, S.:
Computational Methods in Nonlinear Analysis. Efficient Algorithms, Fixed Point Theory and Applications. World Scientific Hackensack (2013).
MR 3134688 |
Zbl 1279.65062
[8] Argyros, I. K., Hilout, S.:
Semilocal convergence conditions for the Secant method using recurrent functions. Rev. Anal. Numér. Théor. Approx. 40 (2011), 107-119.
MR 3059816 |
Zbl 1289.65136
[10] Jr., W. E. Bosarge, Falb, P. L.:
A multipoint method of third order. J. Optimization Theory Appl. 4 (1969), 155-166.
MR 0248581 |
Zbl 0172.18703
[11] Jr., J. E. Dennis:
Toward a Unified Convergence Theory for Newton-Like Methods. Nonlinear Functional Analysis and Applications, Proc. Adv. Sem. Math. Res. Center, Univ. Wisconsin 1970 L. B. Rall Publication No. 26 of the Mathematics Research Center the University of Wisconsin Academic Press, New York (1971), 425-472.
MR 0278556 |
Zbl 0276.65029
[12] Hernández, M. A., Rubio, M. J., Ezquerro, J. A.:
Secant-like methods for solving nonlinear integral equations of the Hammerstein type. J. Comput. Appl. Math. 115 (2000), 245-254.
DOI 10.1016/S0377-0427(99)00116-8 |
MR 1747223
[14] Kantorovich, L. V., Akilov, G. P.:
Functional Analysis. Pergamon Press. Transl. from the Russian by Howard L. Silcock. 2nd ed Oxford (1982).
MR 0664597 |
Zbl 0484.46003
[15] Laasonen, P.:
Ein überquadratisch konvergenter iterativer Algorithmus. Ann. Acad. Sci. Fenn., Ser. A I 450 (1969), 10 German.
MR 0255047 |
Zbl 0193.11704
[16] Ortega, J. M., Rheinboldt, W. C.:
Iterative Solution of Nonlinear Equations in Several Variables. Computer Science and Applied Mathematics Academic Press, New York (1970).
MR 0273810 |
Zbl 0241.65046
[17] Potra, F.-A.:
On the convergence of a class of Newton-like methods. Iterative Solution of Nonlinear Systems of Equations, Proc. Meeting, Oberwolfach 1982 Lecture Notes in Mathematics 953 Springer, Berlin (1982), 125-137.
MR 0678615 |
Zbl 0507.65020
[18] Potra, F.-A.:
Sharp error bounds for a class of Newton-like methods. Libertas Math. 5 (1985), 71-84.
MR 0816258 |
Zbl 0581.47050
[19] Potra, F.-A., Pták, V.:
Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics 103 Pitman Advanced Publishing Program, Boston (1984).
MR 0754338 |
Zbl 0549.41001