[6] Feistauer, M., Dolejší, V., Kučera, V., Sobotíková, V.:
$L^{\infty}(L^2)$-error estimates for the DGFEM applied to convection-diffusion problems on nonconforming meshes. J. Numer. Math. 17 (2009), 45-65.
DOI 10.1515/JNUM.2009.004 |
MR 2541520 |
Zbl 1171.65064
[7] Girault, V., Raviart, P.-A.:
Finite Element Methods for Navier-Stokes Equations. Theory and algorithms. (Extended version of the 1979 publ.). Springer Series in Computational Mathematics 5 Springer, Berlin (1986).
MR 0851383 |
Zbl 0585.65077
[9] Karakashian, O. A., Pascal, F.: Adaptive discontinuous Galerkin approximations of second-order elliptic problems. European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004 P. Neittaanmäki et al. University of Jyväskylä Jyväskylä (2004).
[10] Karakashian, O. A., Pascal, F.:
Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45 (2007), 641-665.
DOI 10.1137/05063979X |
MR 2300291 |
Zbl 1140.65083
[11] Nečas, J.:
Direct methods in the theory of elliptic equations. Academia Prague (1967); Masson et Cie, Paris, 1967, French.
Zbl 1225.35003
[13] Repin, S.:
Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 13 (2002), 121-133.
MR 1949485 |
Zbl 1221.65244
[14] Šebestová, I.: A posteriori error estimates of the discontinuous Galerkin method for convection-diffusion equations. Master Thesis. Charles University in Prague Prague (2009).
[15] Šebestová, I., Dolejší, V.:
A posteriori error estimates of the discontinuous Galerkin method for the heat conduction equation. Acta Univ. Carol., Math. Phys. 53 (2012), 77-94.
MR 3099403 |
Zbl 1280.65098
[17] Verfürth, R.:
A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner Series Advances in Numerical Mathematics John Wiley & Sons, Chichester (1996).
Zbl 0853.65108