[2] Bouarroudj, S., Grozman, P., Leites, D.:
Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix. SIGMA, Symmetry Integrability Geom. Methods Appl. (electronic only) 5 Paper 060, 63 pages (2009).
MR 2529187 |
Zbl 1220.17010
[6] Fei, Q. Y.:
On new simple Lie algebras of Shen Guangyu. Chin. Ann. Math., Ser. B 10 (1989), 448-457.
MR 1038379 |
Zbl 0695.17004
[8] Kac, V. G.:
A description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated. Math. USSR, Izv. 8 (1975), 801-835 \kern 3sp translated from Izv. Akad. Nauk SSSR Ser. Mat. 8 (1975), 800-834 Russian.
MR 0369452
[10] Kac, V. G.:
Classification of infinite-dimensional simple linearly compact Lie superalgebras. Adv. Math. (1998), 139 1-55.
MR 1652530 |
Zbl 0929.17026
[11] Kochetkov, Y., Leites, D.:
Simple Lie algebras in characteristic 2 recovered from superalgebras and on the notion of a simple finite group. Algebra, Proc. Int. Conf. Memory A. I. Mal'cev, Novosibirsk/USSR 1989, Contemp. Math. 131 (1992), 59-67.
MR 1175822 |
Zbl 0765.17006
[12] Leites, D.:
Towards classification of simple finite dimensional modular Lie superalgebras. J. Prime Res. Math. 3 (2007), 101-110.
MR 2397769 |
Zbl 1172.17011
[17] Shen, G. Y.:
An intrinsic property of the Lie algebra $K(m,n)$. Chin. Ann. Math. 2 (1981), 105-115.
Zbl 0498.17009
[18] Shen, G. Y.:
New simple Lie algebras of characteristic $p$. Chin. Ann. Math., Ser. B 4 (1983), 329-346.
MR 0742032 |
Zbl 0507.17007
[19] Strade, H.:
The classification of the simple modular Lie algebras. IV: Determining the associated graded algebra. Ann. Math. (2) 138 (1993), 1-59.
MR 1230926 |
Zbl 0790.17011
[20] Strade, H., Farnsteiner, R.:
Modular Lie Algebras and Their Representations. Monographs and Textbooks in Pure and Applied Mathematics 116 Marcel Dekker, New York (1988).
MR 0929682 |
Zbl 0648.17003
[22] Wang, Y., Zhang, Y. Z.:
A new definition of restricted Lie superalgebras. Chinese Kexue Tongbao 44 (1999), 807-813.
MR 1733605
[23] Wang, Y., Zhang, Y. Z.:
The associative forms of the graded Cartan type Lie superalgebras. Adv. Math., Beijing 29 (2000), 65-70.
MR 1769128 |
Zbl 1009.17015
[25] Wang, X. L., Liu, W. D.:
Filtered Lie superalgebras of odd Hamiltonian type $HO$. English, Chinese summary Adv. Math., Beijing 36 (2007), 710-720.
MR 2417896
[27] Xu, X. N., Zhang, Y. Z., Chen, L. Y.:
The finite-dimensional modular Lie superalgebra $\Gamma$. Algebra Colloq. 17 (2010), 525-540.
MR 2660443 |
Zbl 1203.17009
[30] Zhang, Y. Z., Nan, J. Z.:
Finite-dimensional Lie superalgebras $W(m,n, t)$ and $S(m,n, t)$ of Cartan type. Adv. Math., Beijing 27 (1998), 240-246.
MR 1651296
[32] Zhang, Y. Z., Liu, W. D.:
Modular Lie superalgebras. Chinese Science Press Beijing (2004).
MR 2100474