[1] Alonso, A., Russo, A. D., Padra, C., Rodríguez, R.:
A posteriori error estimates and a local refinement strategy for a finite element method to solve structural-acoustic vibration problems. Adv. Comput. Math. 15 (2001), 25-59.
DOI 10.1023/A:1014243118190 |
MR 1887728 |
Zbl 1043.74041
[2] Babuška, I., Osborn, J.:
Eigenvalue problems. Handbook of Numerical Analysis. Volume II: Finite Element Methods (Part 1) P. Ciarlet et al. North-Holland Amsterdam (1991), 641-787.
MR 1115240
[4] Bennighof, J. K.: Vibroacoustic frequency sweep analysis using automated multi-level substructuring. Proceedings of the AIAA 40$^ th$ SDM Conference, St. Louis, Missouri, 1999 Department of Aerospace Engineering & Engineering Mechanics, The University of Texas Austin (1999).
[5] Bermúdez, A., Gamallo, P., Noguieras, M. R., Rodríguez, R.:
Approximation of a structural acoustic vibration problem by hexahedral finite elements. IMA J. Numer. Anal. 26 (2006), 391-421.
DOI 10.1093/imanum/dri032 |
MR 2218639
[7] Craggs, A.:
The transient response of a coupled plate-acoustic system using plate and acoustic finite elements. Journal of Sound and Vibration 15 (1971), 509-528.
DOI 10.1016/0022-460X(71)90408-1
[8] Deü, J.-F., Larbi, W., Ohayon, R.: Variational formulation of interior structural-acoustic vibration problem. Computational Aspects of Structural Acoustics and Vibrations G. Sandberg et al. CISM International Centre for Mechanical Sciences 505 Springer, Wien (2009), 1-21.
[9] Everstine, G. C.:
A symmetric potential formulation for fluid-structure interaction. Journal of Sound and Vibration 79 (1981), 157-160.
DOI 10.1016/0022-460X(81)90335-7
[10] Morand, H., Ohayon, R.:
Substructure variational analysis of the vibrations of coupled fluid-structure systems. Finite element results. Int. J. Numer. Methods Eng. 14 (1979), 741-755.
DOI 10.1002/nme.1620140508 |
Zbl 0402.73052
[11] Olson, L. G., Bathe, K.-J.:
Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential. Comput. Struct. 21 (1985), 21-32.
DOI 10.1016/0045-7949(85)90226-3 |
Zbl 0568.73088
[12] Petyt, M., Lea, J., Koopmann, G. H.:
A finite element method for determining the acoustic modes of irregular shaped cavities. Journal of Sound and Vibration 45 (1976), 495-502.
DOI 10.1016/0022-460X(76)90730-6
[14] Sandberg, G., Göransson, P.:
A symmetric finite element formulation for acoustic fluid-structure interaction analysis. Journal of Sound and Vibration 123 (1988), 507-515.
DOI 10.1016/S0022-460X(88)80166-4
[15] Stammberger, M.: On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures. PhD thesis. Institute of Numerical Simulation, Hamburg University of Technology Hamburg (2010).
[17] Stammberger, M., Voss, H.:
On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures. ETNA, Electron. Trans. Numer. Anal. (electronic only) 36 (2009-2010), 113-125.
MR 2780001 |
Zbl 1237.74028
[18] Voss, H., Stammberger, M.:
Structural-acoustic vibration problems in the presence of strong coupling. J. Pressure Vessel Technol. 135 (2013), paper 011303.
DOI 10.1115/1.4007251