Previous |  Up |  Next

Article

Title: On characterized subgroups of Abelian topological groups $X$ and the group of all $X$-valued null sequences (English)
Author: Gabriyelyan, S. S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 1
Year: 2014
Pages: 73-99
Summary lang: English
.
Category: math
.
Summary: Let $X$ be an Abelian topological group. A subgroup $H$ of $X$ is characterized if there is a sequence $\mathbf{u} = \{u_n\}$ in the dual group of $X$ such that $H= \{x\in X: \; (u_n,x)\to 1\}$. We reduce the study of characterized subgroups of $X$ to the study of characterized subgroups of compact metrizable Abelian groups. Let $c_0(X)$ be the group of all $X$-valued null sequences and $\mathfrak{u}_0$ be the uniform topology on $c_0(X)$. If $X$ is compact we prove that $c_0(X)$ is a characterized subgroup of $X^\mathbb{N}$ if and only if $X\cong \mathbb T^n\times F$, where $n\geq 0$ and $F$ is a finite Abelian group. For every compact Abelian group $X$, the group $c_0(X)$ is a $\mathfrak{g}$-closed subgroup of $X^\mathbb N$. Some general properties of $(c_0(X),\mathfrak{u}_0)$ and its dual group are given. In particular, we describe compact subsets of $(c_0(X),\mathfrak{u}_0)$. (English)
Keyword: group of null sequences
Keyword: $T$-sequence
Keyword: characterized subgroup
Keyword: $T$-characterized subgroup
Keyword: $\mathfrak{g}$-closed subgroup
MSC: 22A10
MSC: 43A40
MSC: 54H11
idZBL: Zbl 06383786
idMR: MR3160827
.
Date available: 2014-01-17T09:37:11Z
Last updated: 2016-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/143569
.
Reference: [1] Arhangel'skii A.V.: Open and close-to-open mappings. Relations among spaces.Trudy Moskov. Mat. Obsch. 15 (1966), 181–223. MR 0206909
Reference: [2] Arhangel'skii A.V., Tkachenko M.G.: Topological Groups and Related Structures.Atlantis Press/World Scientific, Amsterdam-Paris, 2008. MR 2433295
Reference: [3] Armacost D.: The Structure of Locally Compact Abelian Groups.Monographs and Textbooks in Pure and Applied Mathematics, 68, Marcel Dekker, Inc., New York, 1981. Zbl 0509.22003, MR 0637201
Reference: [4] Aussenhofer L.: Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups.Dissertation, Tübingen, 1998; Dissertationes Math. (Rozprawy Mat.) 384 (1999), 113p. Zbl 0953.22001, MR 1736984
Reference: [5] Barbieri G., Dikranjan D., Milan C., Weber H.: Answer to Raczkowski's question on convergent sequences of integers.Topology Appl. 132 (2003), 89–101. MR 1990082, 10.1016/S0166-8641(02)00366-8
Reference: [6] Barbieri G., Dikranjan D., Milan C., Weber H.: Convergent sequences in precompact group topologies.Appl. Gen. Topol. 6 (2005), 149–169. Zbl 1092.22001, MR 2195810
Reference: [7] Barbieri G., Dikranjan D., Milan C., Weber H.: Topological torsion related to some recursive sequences of integers.Math. Nachr. 281 (2008), 930–950. Zbl 1144.11059, MR 2431568, 10.1002/mana.200510650
Reference: [8] Beiglböck M., Steineder C., Winkler R.: Sequences and filters of characters characterizing subgroups of compact Abelian groups.Topology Appl. 153 (2006), 1682–1695. Zbl 1091.22001, MR 2227021
Reference: [9] Biró A.: Strong characterizing sequences for subgroups of compact groups.J. Number Theory 121 (2006), 324–354. Zbl 1153.11031, MR 2274908, 10.1016/j.jnt.2006.03.008
Reference: [10] Biró A.: Characterizations of groups generated by Kronecker sets.J. Théor. Nombres Bordeaux 19 (2007), 567–582. Zbl 1159.11022, MR 2388789, 10.5802/jtnb.603
Reference: [11] Bíró A., Déshouillers J.-M., Sós V.T.: Good approximation and characterization of subgroups of $\mathbb{R}/\mathbb{Z}$.Studia Sci. Math. Hungar. 38 (2001), 97–113. MR 1877772
Reference: [12] Biró A., Sós V.T.: Strong characterizing sequences in simultaneous Diophantine approximation.J. Number Theory 99 (2003), 405–414. Zbl 1058.11047, MR 1968461, 10.1016/S0022-314X(02)00068-9
Reference: [13] Borel J.P.: Sous-groupes de $\mathbb R$ liés à répartition modulo $1$ de suites.Ann. Fac. Sci. Toulouse Math. 5 (1983), 217–235. MR 0747191, 10.5802/afst.595
Reference: [14] Chasco M.J.: Pontryagin duality for metrizable groups.Arch. Math. 70 (1998), 22–28. Zbl 0899.22001, MR 1487450, 10.1007/s000130050160
Reference: [15] Chasco M.J., Martín-Peinador E., Tarieladze V.: On Mackey topology for groups.Studia Math. 132 (1999), 257–284. Zbl 0930.46006, MR 1669662
Reference: [16] Comfort W.W., Raczkowski S.U., Trigos-Arrieta F.J.: Making group topologies with, and without, convergent sequences.Appl. Gen. Topol. 7 (2006), 109–124. Zbl 1135.22004, MR 2284939, 10.4995/agt.2006.1936
Reference: [17] Comfort W.W., Ross K.A.: Topologies induced by groups of characters.Fund. Math. 55 (1964), 283–291. MR 0169940
Reference: [18] Comfort W., Trigos-Arrieta F.-J., Ta Sun Wu: The Bohr compactification, modulo a metrizable subgroup.Fund. Math. 143 (1993), 119–136. Zbl 0872.22001, MR 1240629
Reference: [19] Dikranjan D., Gabriyelyan S.S.: On characterized subgroups of compact abelian groups.Topology Appl. 160 (2013), 2427–2442. MR 3120657, 10.1016/j.topol.2013.07.037
Reference: [20] Dikranjan D., Kunen K.: Characterizing subgroups of compact abelian groups.J. Pure Appl. Algebra 208 (2007), 285–291. Zbl 1109.22002, MR 2269843, 10.1016/j.jpaa.2005.12.011
Reference: [21] Dikranjan D., Martín-Peinador E., Tarieladze V.: Group valued null sequences and metrizable non-Mackey groups.Forum Math. DOI: 10.1515/forum-2011-0099, February 2012.
Reference: [22] Dikranjan D., Milan C., Tonolo A.: A characterization of the MAP abelian groups.J. Pure Appl. Algebra 197 (2005), 23–41. MR 2123978, 10.1016/j.jpaa.2004.08.021
Reference: [23] Dikranjan D., Prodanov I., Stojanov L.: Topological groups. Characters, Dualities, and Minimal Group Topologies.Marcel Dekker, Inc., New York-Basel, 1990. MR 1015288
Reference: [24] Eggleston H.G.: Sets of fractional dimensions which occur in some problems of number theory.Proc. London Math. Soc. 54 (1952), 42–93. Zbl 0045.16603, MR 0048504
Reference: [25] Engelking R.: General Topology.Panstwowe Wydawnictwo Naukowe, Waszawa, 1977. Zbl 0684.54001, MR 0500779
Reference: [26] Gabriyelyan S.S.: Groups of quasi-invariance and the Pontryagin duality.Topology Appl. 157 (2010), 2786–2802. Zbl 1207.54047, MR 2729338, 10.1016/j.topol.2010.08.018
Reference: [27] Gabriyelyan S.S.: On $T$-sequences and characterized subgroups.Topology Appl. 157 (2010), 2834–2843. Zbl 1221.22009, MR 2729343, 10.1016/j.topol.2010.09.002
Reference: [28] Gabriyelyan S.S.: On a generalization of Abelian sequential groups.Fund. Math. 221 (2013), 95–127. MR 3062915, 10.4064/fm221-2-1
Reference: [29] Gabriyelyan S.S.: Minimally almost periodic group topologies on infinite countable Abelian groups: A solution to a question by Comfort.preprint, 2010, arXiv.org/abs/1002.1468.
Reference: [30] Gabriyelyan S.S.: On $T$-characterized subgroups of compact Abelian groups.preprint, 2012.
Reference: [31] Glicksberg I.: Uniform boundedness for groups.Canad. J. Math. 14 (1962), 269–276. Zbl 0109.02001, MR 0155923, 10.4153/CJM-1962-017-3
Reference: [32] Graev M.: Free topological groups.Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 278–324. MR 0025474
Reference: [33] Hart J.E., Kunen K: Limits in function spaces and compact groups.Topology Appl. 151 (2005), 157–168. Zbl 1074.54013, MR 2139749, 10.1016/j.topol.2003.08.036
Reference: [34] Hart J.E., Kunen K.: Limits in compact Abelian groups.Topology Appl. 153 (2006), 991–1002. Zbl 1093.54010, MR 2203013, 10.1016/j.topol.2005.02.011
Reference: [35] Hewitt E., Ross K.A.: Abstract Harmonic Analysis.Vol. I, 2nd ed., Springer, Berlin, 1979. Zbl 0837.43002, MR 0551496
Reference: [36] Kaplan S.: Extensions of the Pontryagin duality, I: Infinite products.Duke Math. J. 15 (1948), 649–658. MR 0026999, 10.1215/S0012-7094-48-01557-9
Reference: [37] Kraaikamp C., Liardet P.: Good approximations and continued fractions.Proc. Amer. Math. Soc. 112 (1991), 303–309. Zbl 0725.11033, MR 1062392, 10.1090/S0002-9939-1991-1062392-7
Reference: [38] Larcher G.: A convergence problem connected with continued fractions.Proc. Amer. Math. Soc. 103 (1988), 718–722. Zbl 0659.10009, MR 0947645, 10.1090/S0002-9939-1988-0947645-2
Reference: [39] Nienhuys J.: Construction of group topologies on Abelian groups.Fund. Math. 75 (1972), 101–116. Zbl 0213.03503, MR 0302810
Reference: [40] Petersen K., Shapiro L.: Induced flows.Trans. Amer. Math. Soc. 177 (1973), 375–390. Zbl 0229.54036, MR 0322839, 10.1090/S0002-9947-1973-0322839-1
Reference: [41] Protasov I.V., Zelenyuk E.G.: Topologies on abelian groups.Math. USSR Izv. 37 (1991), 445–460; Russian original: Izv. Akad. Nauk SSSR 54 (1990), 1090–1107. Zbl 0997.22002, MR 1086087, 10.1070/IM1991v037n02ABEH002071
Reference: [42] Raczkowski S.U.: Totally bounded topological group topologies on the integers.Topology Appl. 121 (2002), 63–74. Zbl 1007.22003, MR 1903683, 10.1016/S0166-8641(01)00110-9
Reference: [43] Rolewicz S.: Some remarks on monothetic groups.Colloq. Math. 13 (1964), 28–29. Zbl 0131.26901, MR 0171876
Reference: [44] Siwiec F.: Sequence-covering and countably bi-quotient mapping.General Topology Appl. 1 (1971), 143–154. MR 0288737, 10.1016/0016-660X(71)90120-6
Reference: [45] Winkler R.: Ergodic group rotations, Hartman sets and Kronecker sequences.Monatsh. Math. 135 (2002), 333–343. Zbl 1008.37005, MR 1914810, 10.1007/s006050200027
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-1_7.pdf 376.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo