[3] Deville R., Godefroy G., Zizler V.:
Smoothness and Renormings in Banach Spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific and Technical, New York, 1993.
MR 1211634 |
Zbl 0782.46019
[4] Engelking R.:
General Topology. revised and completed edition, Heldermann Verlag, Berlin, 1989.
MR 1039321 |
Zbl 0684.54001
[5] Hájek P., Montesinos V., Vanderwerff J., Zizler V.:
Biorthogonal Systems in Banach Spaces. CMS Books in Mathematics, 26, Springer, New York, 2008.
MR 2359536 |
Zbl 1136.46001
[6] Kalenda O.:
Valdivia compacta and subspaces of $\mathcal C (K)$ spaces. Extracta Math. 14 (1999), no. 3, 355–371.
MR 1759476
[7] Kalenda O.:
Continuous images and other topological properties of Valdivia compacta. Fund. Math. 162 (1999), no. 2, 181–192.
MR 1734916 |
Zbl 0989.54019
[8] Kalenda O.:
Embedding the ordinal segment $[0,\omega_1]$ into continuous images of Valdivia compacta. Comment. Math. Univ. Carolin. 40 (1999), no. 4, 777–783.
MR 1756552
[10] Kalenda O.:
A characterization of Valdivia compact spaces. Collect. Math. 51 (2000), no. 1, 59–81.
MR 1757850 |
Zbl 0949.46004
[11] Kalenda O., ::
Valdivia compact spaces in topology and Banach space theory. Extracta Math. 15 (2000), no. 1, 1–85.
MR 1792980
[14] Banakh T., Kubiś W.: Spaces of continuous functions over Dugundji compacta. preprint, arXiv:math/0610795v2, 2008.
[16] Kakol J., Kubiś W., López-Pellicer M.:
Descriptive Topology in Selected Topics of Functional Analysis Developments in Mathematics. Developments in Mathematics, 24, Springer, New York, 2011.
DOI 10.1007/978-1-4614-0529-0 |
MR 2953769
[17] Kunen K.:
Set Theory. Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam, 1983.
MR 0756630 |
Zbl 0960.03033