Previous |  Up |  Next

Article

Keywords:
retractional skeleton; projectional skeleton; Valdivia compacta; Plichko spaces
Summary:
We prove some generalizations of results concerning Valdivia compact spaces (equivalently spaces with a commutative retractional skeleton) to the spaces with a retractional skeleton (not necessarily commutative). Namely, we show that the dual unit ball of a Banach space is Corson provided the dual unit ball of every equivalent norm has a retractional skeleton. Another result to be mentioned is the following. Having a compact space $K$, we show that $K$ is Corson if and only if every continuous image of $K$ has a retractional skeleton. We also present some open problems in this area.
References:
[1] Cúth M.: Separable reduction theorems by the method of elementary submodels. Fund. Math. 219 (2012), 191–222. DOI 10.4064/fm219-3-1 | MR 3001239 | Zbl 1270.46015
[2] Cúth M.: Simultaneous projectional skeletons. J. Math. Anal. Appl. 411 (2014), 19–29; DOI: 10.1016/j.jmaa.2013.09.020. DOI 10.1016/j.jmaa.2013.09.020 | MR 3118464
[3] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific and Technical, New York, 1993. MR 1211634 | Zbl 0782.46019
[4] Engelking R.: General Topology. revised and completed edition, Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[5] Hájek P., Montesinos V., Vanderwerff J., Zizler V.: Biorthogonal Systems in Banach Spaces. CMS Books in Mathematics, 26, Springer, New York, 2008. MR 2359536 | Zbl 1136.46001
[6] Kalenda O.: Valdivia compacta and subspaces of $\mathcal C (K)$ spaces. Extracta Math. 14 (1999), no. 3, 355–371. MR 1759476
[7] Kalenda O.: Continuous images and other topological properties of Valdivia compacta. Fund. Math. 162 (1999), no. 2, 181–192. MR 1734916 | Zbl 0989.54019
[8] Kalenda O.: Embedding the ordinal segment $[0,\omega_1]$ into continuous images of Valdivia compacta. Comment. Math. Univ. Carolin. 40 (1999), no. 4, 777–783. MR 1756552
[9] Kalenda O.: Valdivia compacta and equivalent norms. Studia Math. 138 (2000), 179–191. MR 1749079 | Zbl 1073.46009
[10] Kalenda O.: A characterization of Valdivia compact spaces. Collect. Math. 51 (2000), no. 1, 59–81. MR 1757850 | Zbl 0949.46004
[11] Kalenda O., :: Valdivia compact spaces in topology and Banach space theory. Extracta Math. 15 (2000), no. 1, 1–85. MR 1792980
[12] Kalenda O.F.K.: M-bases in spaces of continuous functions on ordinals. Colloq. Math. 92 (2002), no. 2, 179–187. DOI 10.4064/cm92-2-3 | MR 1899436 | Zbl 1029.46006
[13] Kubiś W., Michalewski H.: Small Valdivia compact spaces. Topology Appl. 153 (2006), 2560–2573. DOI 10.1016/j.topol.2005.09.010 | MR 2243734 | Zbl 1138.54024
[14] Banakh T., Kubiś W.: Spaces of continuous functions over Dugundji compacta. preprint, arXiv:math/0610795v2, 2008.
[15] Kubiś W.: Banach spaces with projectional skeletons. J. Math. Anal. Appl. 350 (2009), no. 2, 758–776. DOI 10.1016/j.jmaa.2008.07.006 | MR 2474810 | Zbl 1166.46008
[16] Kakol J., Kubiś W., López-Pellicer M.: Descriptive Topology in Selected Topics of Functional Analysis Developments in Mathematics. Developments in Mathematics, 24, Springer, New York, 2011. DOI 10.1007/978-1-4614-0529-0 | MR 2953769
[17] Kunen K.: Set Theory. Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam, 1983. MR 0756630 | Zbl 0960.03033
Partner of
EuDML logo