[3] Goodearl K.R.:
Von Neumann Regular Rings. Pitman, London, 1979, Second Ed. Melbourne, FL 1991, Krieger.
MR 0533669 |
Zbl 0841.16008
[4] Kunen K.:
Set Theory: An Introduction to Independence Proofs. North Holland, Amsterdam, 1980.
MR 0597342 |
Zbl 0534.03026
[5] Rentschler R.:
Sur les modules $M$ tels que $Hom(M,-)$ commute avec les sommes directes. C.R. Acad. Sci. Paris 268 (1969), 930–933.
MR 0241466 |
Zbl 0179.06102
[6] Růžička P., Trlifaj J., Žemlička J.:
Criteria of steadiness. Abelian Groups, Module Theory, and Topology, Marcel Dekker, New York, 1998, pp. 359–372.
MR 1651181 |
Zbl 0917.16004
[7] Stenström B.:
Rings of Quotients. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 217, Springer, New York-Heidelberg, 1975.
MR 0389953
[9] Trlifaj J.:
Steady rings may contain large sets of orthogonal idempotents. Proc. Conf. Abelian Groups and Modules (Padova 1994), Kluwer, Dordrecht, 1995, pp. 467–473.
MR 1378220 |
Zbl 0845.16009
[10] Zelenyuk E.G.:
Ultrafilters and topologies on groups. de Gruyter Expositions in Mathematics, 50, de Gruyter, Berlin, 2011.
MR 2768144 |
Zbl 1215.22001
[12] Žemlička J.:
Classes of dually slender modules. Proceedings of the Algebra Symposium, Cluj, 2005, Editura Efes, Cluj-Napoca, 2006, pp. 129–137.
MR 2338602 |
Zbl 1152.16004
[13] Žemlička J., and Trlifaj J.:
Steady ideals and rings. Rend. Sem. Mat. Univ. Padova 98 (1997), 161–172.
MR 1492975