[1] Berger, M.:
Les espaces symétriques non–compacts. Ann. Sci. ENS (1957).
Zbl 0093.35602
[3] Bertram, W.: The projective geometry of a group. arXiv: math.GR/1201.6201.
[5] Bertram, W.:
Generalized projective geometries: General theory and equivalence with Jordan structures. Advances in Geometry 3 (2002), 329–369.
MR 1940443
[7] Bertram, W.:
Differential geometry, Lie groups and symmetric spaces over general base fields and rings. Mem. Amer. Math. Soc. 192 (900) (2008), x+202, arXiv: math.DG/0502168.
MR 2369581 |
Zbl 1144.58002
[8] Bertram, W.:
Homotopes and conformal deformations of symmetric spaces. J. Lie Theory 18 (2008), 301–333, math.RA/0606449.
MR 2431118 |
Zbl 1164.17021
[10] Bertram, W.:
On the Hermitian projective line as a home for the geometry of Quantum Theory. AIP Conference Proceedings 1079, p. 14–25 (XXVII Workshop on Geometrical Methods in Physics, Bialowieza 2008), American Institute of Physics, New York, 2008.
MR 2757694 |
Zbl 1167.81394
[11] Bertram, W., Bieliavsky, P.: Homotopes of symmetric spaces. I : Construction by algebras with two involutions. arXiv: math.DG/1011.2923.
[12] Bertram, W., Bieliavsky, P.: Homotopes of symmetric spaces. II : Structure Variety and Classification. arXiv: math.DG/1011.3161.
[14] Bertram, W., Kinyon, M.:
Associative geometries. I: Torsors, linear relations and grassmannians. J. Lie Theory 20 (2) (2010), 215–252, arXiv: math.RA/0903.5441.
MR 2681368 |
Zbl 1206.20074
[15] Bertram, W., Kinyon, M.:
Associative geometries. II: Involutions, the classical torsors, and their homotopes. J. Lie Theory 20 (2) (2010), 253–282, arXiv: math.RA/0909.4438.
MR 2681369 |
Zbl 1206.20075
[16] Bertram, W., Neeb, K.–H.:
Projective completions of Jordan pairs. I: The generalized projective geometry of a Lie algebra. J. Algebra 277 (2) (2004), 193–225, arXiv: math.RA/0306272.
MR 2067615 |
Zbl 1100.17012
[17] Bertram, W., Neeb, K.–H.:
Projective completions of Jordan pairs. Part II: Manifold structures and symmetric spaces (avec K.-H. Neeb). vec K.-H. Neeb), Geom. Dedicata 112 (1) (2005), 73–113, arXiv: math.GR/0401236.
DOI 10.1007/s10711-004-4197-6 |
MR 2163891
[18] Chenal, J.:
Generalized flag geometries and manifolds associated to short Z-graded Lie algebras in arbitrary dimension. C. R. Math. Acad. Sci. Paris 347 (2009), 21–25, arXiv: 1007.4076v1 [math.RA].
DOI 10.1016/j.crma.2008.12.001 |
MR 2536743
[19] Chu, Ch.–H.:
Jordan Structures in Geometry and Analysis. Cambridge University Press, 2012.
MR 2885059 |
Zbl 1238.17001
[20] Connes, A.: Non–commutative Geometry. Academic Press, 1994.
[21] Emch, G.: Mathematical and Conceptual Foundations of 20th Century Physics. North Holland, 1985.
[22] Faraut, J., Koranyi, A.:
Analysis on Symmetric Cones. Clarendon Press, Oxford, 1994.
Zbl 0841.43002
[26] Koecher, M.: The Minnesota Notes on Jordan Algebras and Their Applications (reprint). eprint), Lecture Notes in Mat., vol. 1710, Springer, Berlin, 1999.
[27] Koufany, K.:
Réalisation des espaces symétriques de type Cayley. C. R. Math. Acad. Sci. Paris 318 (1994), 425–428.
Zbl 0839.53035
[28] Loos, O.:
Symmetric Spaces I. Benjamin, New York, 1969.
Zbl 0175.48601
[30] Loos, O.:
Jordan Pairs. Lecture Notes in Math., vol. 460, Springer, Berlin, 1975.
Zbl 0301.17003
[35] Springer, T. A.:
Jordan Algebras and Algebraic Groups. Classics in Mathematics, Springer-Verlag, 1998, Reprint of the 1973 edition.
Zbl 1024.17018
[36] Takeuchi, Masaru: Cell decompositions and Morse equalities on certain symmetric spaces. J. Fac. Sci. Univ. Tokyo Sect. I 12 (1965), 81–192.
[37] Upmeier, H.: Symmetric Banach Manifolds and Jordan $C^*$-algebras. North-Holland Math. Stud., North-Holland Publishing Co., Amsterdam, 1985.
[38] Upmeier, H.: Jordan algebras in analysis, operator theory, and quantum mechanics. CBMS Regional Conference Series in Mathematics, 67. Published for the Conference Board of the Mathematical Sciences, Washington, DC, American Mathematical Society, Providence, RI, 1987.