[3] Campoamor–Stursberg, R.:
Solvable Lie algebras with an $\mathbb{N}$–graded nilradical of maximal nilpotency degree and their invariants. J. Phys. A 43 (14) (2010), 18pp., 145202.
DOI 10.1088/1751-8113/43/14/145202 |
MR 2606433
[4] Cartan, E.:
Sur la structure des groupes de transformations finis et continus. Paris: These, Nony, 1894; 2nd ed. Vuibert, 1933.
Zbl 0007.10204
[5] Gantmacher, F.: On the classification of real simple Lie groups. Mat. Sb. (1950), 103–112.
[6] Gong, M.–P.: Classification of nilpotent Lie algebras of dimension $7$. Ph.D. thesis, University of Waterloo, 1998.
[7] Hindeleh, F., Thompson, G.:
Seven dimensional Lie algebras with a four-dimensional nilradical. Algebras Groups Geom. 25 (3) (2008), 243–265.
MR 2522804 |
Zbl 1210.17016
[8] Humphreys, J.: Lie algebras and their representations. Springer, 1997.
[10] Morozov, V. V.:
Classification of nilpotent Lie algebras in dimension six. Izv. Vyssh. Uchebn. Zaved. Mat. 4 (5) (1958), 161–171.
MR 0130326
[11] Mubarakzyanov, G. M.:
Classification of real Lie algebras in dimension five. Izv. Vyssh. Uchebn. Zaved. Mat. 3 (34) (1963), 99–106.
MR 0155871
[12] Mubarakzyanov, G. M.:
Classification of solvable Lie algebras in dimension six with one non-nilpotent basis element. Izv. Vyssh. Uchebn. Zaved. Mat. 4 (35) (1963), 104–116.
MR 0155872
[13] Mubarakzyanov, G. M.:
On solvable Lie algebras. Izv. Vyssh. Uchebn. Zaved. Mat. 1 (32) (1963), 114–123.
MR 0153714 |
Zbl 0166.04104
[17] Seeley, C.:
$7$–dimensional nilpotent Lie algebra. Trans. Amer. Math. Soc. 335 (2) (1993), 479–496.
MR 1068933
[18] Shabanskaya, A.:
Classification of six dimensional solvable indecomposable Lie algebras with a codimension one nilradical over $\mathbb{R}$. Ph.D. thesis, University of Toledo, 2011.
MR 2890187
[19] Shabanskaya, A., Thompson, G.:
Six–dimensional Lie algebras with a five–dimensional nilradical. J. Lie Theory 23 (2) (2013), 313–355.
MR 3113513 |
Zbl 1280.17014
[20] Skjelbred, T., Sund, T.: Classification of nilpotent Lie algebras in dimension six. University of Oslo, 1977, preprint.
[22] Snobl, L.:
Maximal solvable extensions of filiform algebras. Arch. Math. (Brno 47 (5) (2011), 405–414.
MR 2876944 |
Zbl 1265.17017
[25] Snobl, L., Winternitz, P.:
All solvable extensions of a class of nilpotent Lie algebras of dimension $n$ and degree of nilpotency $n-1$. J. Phys. A 2009 (2009), 16pp., 105201.
MR 2485857 |
Zbl 1178.17009
[28] Umlauf, K. A.: Über die Zusammensetzung der endlichen continuierliche Transformationgruppen insbesondere der Gruppen von Rang null. Ph.D. thesis, University of Leipzig, 1891.
[29] Vergne, M.:
Cohomologie des algèbres de Lie nilpotentes. Application a l’étude de la variété des algebres de Lie nilpotentes. Bull. Math. Soc. France 78 (1970), 81–116.
MR 0289609 |
Zbl 0244.17011