[1] Boyd, B., Ghaoui, L. E., Feron, E., Balakrishnan, V. B.:
Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia 1994.
MR 1284712
[3] Chen, W.-H., Zheng, W.-X., Shen, Y.:
Delay-dependent stochastic stability and $H_\infty$-control of uncertain neutral stochastic systems with time delay. IEEE Trans. Automat. Control 54 (2009), 7, 1660-1667.
DOI 10.1109/TAC.2009.2017981 |
MR 2535767
[5] Du, B., Lam, J., Shu, Z., Wang, Z.:
A delay-partitioning projection approach to stability analysis of continuous systems with multiple delay components. IET-Control Theory Appl. 3 (2009), 4, 383-390.
MR 2512656
[7] Gouaisbaut, F., Peaucelle, D.: Delay-dependent stability analysis of linear time delay systems. In: Proc. IFAC Workshop Time Delay Syst. 2006, pp. 1-12.
[8] Gao, H., Fei, Z., Lam, J., Du, B.:
Further results on exponential estimates of markovian jump systems with mode-dependent time-varying delays. IEEE Trans. Automaat. Control 56 (2011), 1, 223-229.
DOI 10.1109/TAC.2010.2090575 |
MR 2777223
[9] Gao, H., Chen, T.:
New results on stability of discrete-time systems with time-varying state delay. IEEE Trans. Automat. Control 52 (2007), 2, 328-334.
DOI 10.1109/TAC.2006.890320 |
MR 2295017
[10] Gu, K., Kharitonov, V., Chen, J.:
Stability of Time-delay Systems. Birkhauser, Boston 2003.
Zbl 1039.34067
[11] Huang, L., Mao, X.:
Delay-dependent exponential stability of neutral stochastic delay systems. IEEE Trans. Automat. Control 54 (2009), 1, 147-152.
DOI 10.1109/TAC.2008.2007178 |
MR 2478078
[15] Jerzy, K.:
Stochastic controllability of linear systems with state delays. Internat. J. Appl. Math. Comput. Sci. 17 (2007), 1, 5-13.
MR 2310791 |
Zbl 1133.93307
[16] Li, X.-G., Zhu, X.-J., Cela, A., Reama, A.:
Stability analysis of neutral systems with mixed delays. Automatica 44 (2008), 8, 2968-2972.
MR 2527226 |
Zbl 1152.93450
[18] Mao, X.:
Stochastic Differential Equations and Their Applications. Horwood Publication, Chichester 1997.
MR 1475218 |
Zbl 0892.60057
[19] Wu, L. G., Feng, Z. G., Zheng, W.-X.:
Exponential stability analysis for delayed neural networks with switching parameters: average dwell time approach. IEEE Trans. Neural Netw. 21 (2010), 9, 1396-1407.
DOI 10.1109/TNN.2010.2056383
[20] Wang, Y., Wang, Z., Liang, J.:
On robust stability of stochastic genetic regulatory networks with time delays: A delay fractioning approach. IEEE Trans. Syst. Man Cybernet. B 40 (2010), 3, pp. 729-740.
DOI 10.1109/TSMCB.2009.2026059
[22] Zhu, S., Li, Z., Zhang, C.:
Delay decomposition approach to delay-dependent stability for singular time-delay systems. IET-Control Theory Appl. 4 (2010), 11, 2613-2620.
MR 2798844
[23] Zhou, S., Zhou, L.:
Improved exponential stability criteria and stabilization of T-S model-based neutral systems. IET-Control Theory Appl. 4 (2010), 12, 2993-3002.
MR 2808635