[1] Ainsworth, M., Oden, J. T.:
A Posteriori Error Estimation in Finite Element Analysis. Wiley and Sons, New York 2000.
MR 1885308 |
Zbl 1008.65076
[2] Babuška, I., Strouboulis, T.:
The Finite Element Method and its Reliability. Oxford University Press, New York 2001.
MR 1857191
[3] Bangerth, W., Rannacher, R.:
Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Berlin 2003.
MR 1960405 |
Zbl 1020.65058
[4] Braess, D., Hoppe, R. H. W., Schöberl, J.:
A posteriori estimators for obstacle problems by the hypercircle method. Comp. Visual. Sci. 11 (2008), 351-362.
DOI 10.1007/s00791-008-0104-2 |
MR 2425501
[5] Brezi, F., Hager, W. W., Raviart, P. A.:
Error estimates for the finite element solution of variational inequalities I. Numer. Math. 28 (1977), 431-443.
DOI 10.1007/BF01404345 |
MR 0448949
[6] Buss, H., Repin, S.:
A posteriori error estimates for boundary value problems with obstacles. In: Proc. 3rd European Conference on Numerical Mathematics and Advanced Applications, Jÿvaskylä 1999, World Scientific 2000, pp. 162-170.
MR 1936177 |
Zbl 0968.65041
[7] Carstensen, C., Merdon, C.:
A posteriori error estimator completition for conforming obstacle problems. Numer. Methods Partial Differential Equations 29 (2013), 667-�692.
DOI 10.1002/num.21728 |
MR 3022903
[8] Dostál, Z.:
Optimal Quadratic Programming Algorithms. Springer 2009.
MR 2492434
[10] Fuchs, M., Repin, S.:
A Posteriori Error Estimates for the Approximations of the Stresses in the Hencky Plasticity Problem. Numer. Funct. Anal. Optim. 32 (2011), 610-640.
DOI 10.1080/01630563.2011.571802 |
MR 2795532
[11] Glowinski, R., Lions, J. L., Trémolieres, R.:
Numerical Analysis of Variational Inequalities. North-Holland 1981.
MR 0635927 |
Zbl 0463.65046
[12] Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.:
Solution of Variational Inequalities in Mechanics. Applied Mathematical Sciences 66, Springer-Verlag, New York 1988.
MR 0952855 |
Zbl 0654.73019
[13] Kikuchi, N., Oden, J. T.:
Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM 1995.
MR 0961258 |
Zbl 0685.73002
[14] Kraus, J., Tomar, S.:
Algebraic multilevel iteration method for lowest-order Raviart-Thomas space and applications. Internat. J. Numer. Meth. Engrg. 86 (2011), 1175-1196.
DOI 10.1002/nme.3103 |
MR 2817075 |
Zbl 1235.65130
[16] Neittaanmäki, P., Repin, S.:
Reliable Methods for Computer Simulation (Error Control and a Posteriori Estimates). Elsevier 2004.
MR 2095603 |
Zbl 1076.65093
[18] Repin, S.:
A posteriori error estimation for nonlinear variational problems by duality theory. Zapiski Nauchn. Semin. POMI 243 (1997), 201-214.
MR 1629741 |
Zbl 0904.65064
[19] Repin, S.:
Estimates of deviations from exact solutions of elliptic variational inequalities. Zapiski Nauchn. Semin. POMI 271 (2000), 188-203.
MR 1810617 |
Zbl 1118.35320
[20] Repin, S.:
A Posteriori Estimates for Partial Differential Equations. Walter de Gruyter, Berlin 2008.
MR 2458008 |
Zbl 1162.65001
[23] Ulbrich, M.:
Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. SIAM 2011.
MR 2839219 |
Zbl 1235.49001
[24] Valdman, J.:
Minimization of functional majorant in a posteriori error analysis based on $H(div)$ multigrid-preconditioned CG method. Advances in Numerical Analysis (2009).
MR 2739760 |
Zbl 1200.65095