Previous |  Up |  Next

Article

Keywords:
obstacle problem; a posteriori error estimate; functional majorant; finite element method; variational inequalities; Uzawa algorithm
Summary:
We verify functional a posteriori error estimate for obstacle problem proposed by Repin. Simplification into 1D allows for the construction of a nonlinear benchmark for which an exact solution of the obstacle problem can be derived. Quality of a numerical approximation obtained by the finite element method is compared with the exact solution and the error of approximation is bounded from above by a majorant error estimate. The sharpness of the majorant error estimate is discussed.
References:
[1] Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley and Sons, New York 2000. MR 1885308 | Zbl 1008.65076
[2] Babuška, I., Strouboulis, T.: The Finite Element Method and its Reliability. Oxford University Press, New York 2001. MR 1857191
[3] Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Berlin 2003. MR 1960405 | Zbl 1020.65058
[4] Braess, D., Hoppe, R. H. W., Schöberl, J.: A posteriori estimators for obstacle problems by the hypercircle method. Comp. Visual. Sci. 11 (2008), 351-362. DOI 10.1007/s00791-008-0104-2 | MR 2425501
[5] Brezi, F., Hager, W. W., Raviart, P. A.: Error estimates for the finite element solution of variational inequalities I. Numer. Math. 28 (1977), 431-443. DOI 10.1007/BF01404345 | MR 0448949
[6] Buss, H., Repin, S.: A posteriori error estimates for boundary value problems with obstacles. In: Proc. 3rd European Conference on Numerical Mathematics and Advanced Applications, Jÿvaskylä 1999, World Scientific 2000, pp. 162-170. MR 1936177 | Zbl 0968.65041
[7] Carstensen, C., Merdon, C.: A posteriori error estimator completition for conforming obstacle problems. Numer. Methods Partial Differential Equations 29 (2013), 667-�692. DOI 10.1002/num.21728 | MR 3022903
[8] Dostál, Z.: Optimal Quadratic Programming Algorithms. Springer 2009. MR 2492434
[9] Falk, R. S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28 (1974), 963-971. DOI 10.1090/S0025-5718-1974-0391502-8 | MR 0391502 | Zbl 0297.65061
[10] Fuchs, M., Repin, S.: A Posteriori Error Estimates for the Approximations of the Stresses in the Hencky Plasticity Problem. Numer. Funct. Anal. Optim. 32 (2011), 610-640. DOI 10.1080/01630563.2011.571802 | MR 2795532
[11] Glowinski, R., Lions, J. L., Trémolieres, R.: Numerical Analysis of Variational Inequalities. North-Holland 1981. MR 0635927 | Zbl 0463.65046
[12] Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of Variational Inequalities in Mechanics. Applied Mathematical Sciences 66, Springer-Verlag, New York 1988. MR 0952855 | Zbl 0654.73019
[13] Kikuchi, N., Oden, J. T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM 1995. MR 0961258 | Zbl 0685.73002
[14] Kraus, J., Tomar, S.: Algebraic multilevel iteration method for lowest-order Raviart-Thomas space and applications. Internat. J. Numer. Meth. Engrg. 86 (2011), 1175-1196. DOI 10.1002/nme.3103 | MR 2817075 | Zbl 1235.65130
[15] Lions, J. L., Stampacchia, G.: Variational inequalities. Comm. Pure Appl. Math. XX(3) (1967), 493-519. DOI 10.1002/cpa.3160200302 | MR 0216344 | Zbl 0152.34601
[16] Neittaanmäki, P., Repin, S.: Reliable Methods for Computer Simulation (Error Control and a Posteriori Estimates). Elsevier 2004. MR 2095603 | Zbl 1076.65093
[17] Repin, S.: A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comput. 69(230) (2000), 481-500. DOI 10.1090/S0025-5718-99-01190-4 | MR 1681096 | Zbl 0949.65070
[18] Repin, S.: A posteriori error estimation for nonlinear variational problems by duality theory. Zapiski Nauchn. Semin. POMI 243 (1997), 201-214. MR 1629741 | Zbl 0904.65064
[19] Repin, S.: Estimates of deviations from exact solutions of elliptic variational inequalities. Zapiski Nauchn. Semin. POMI 271 (2000), 188-203. MR 1810617 | Zbl 1118.35320
[20] Repin, S.: A Posteriori Estimates for Partial Differential Equations. Walter de Gruyter, Berlin 2008. MR 2458008 | Zbl 1162.65001
[21] Repin, S., Valdman, J.: Functional a posteriori error estimates for problems with nonlinear boundary conditions. J. Numer. Math. 16 (2008), 1, 51-81. DOI 10.1515/JNUM.2008.003 | MR 2396672 | Zbl 1146.65054
[22] Repin, S., Valdman, J.: Functional a posteriori error estimates for incremental models in elasto-plasticity. Cent. Eur. J. Math. 7 (2009), 3, 506-519. DOI 10.2478/s11533-009-0035-2 | MR 2534470 | Zbl 1269.74202
[23] Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. SIAM 2011. MR 2839219 | Zbl 1235.49001
[24] Valdman, J.: Minimization of functional majorant in a posteriori error analysis based on $H(div)$ multigrid-preconditioned CG method. Advances in Numerical Analysis (2009). MR 2739760 | Zbl 1200.65095
[25] Zou, Q., Veeser, A., Kornhuber, R., Gräser, C.: Hierarchical error estimates for the energy functional in obstacle problems. Numer. Math. 117 (2012), 4, 653-677. DOI 10.1007/s00211-011-0364-5 | MR 2776914 | Zbl 1218.65067
Partner of
EuDML logo