[2] Bäuerle, N., Rieder, U.:
Markov Decision Processes with Applications to Finance. Springer-Verlag, Berlin - Heidelberg 2011.
MR 2808878 |
Zbl 1236.90004
[3] Bertsekas, D. P.:
Dynamic Programming: Deterministic and Stochastic Models. Prentice Hall, New Jersey 1987.
MR 0896902 |
Zbl 0649.93001
[4] Cruz-Suárez, D., Montes-de-Oca, R., Salem-Silva, F.:
Conditions for the uniqueness of optimal policies of discounted Markov decision processes. Math. Methods Oper. Res. 60 (2004), 415-436.
DOI 10.1007/s001860400372 |
MR 2106092 |
Zbl 1104.90053
[5] Dragut, A.: Structured optimal policies for Markov decision processes: lattice programming techniques. In: Wiley Encyclopedia of Operations Research and Management Science (J. J. Cochran, ed.), John Wiley and Sons, 2010, pp. 1-25.
[7] Flores-Hernández, R. M., Montes-de-Oca, R.:
Monotonicity of minimizers in optimization problems with applications to Markov control processes. Kybernetika 43 (2007), 347-368.
MR 2362724 |
Zbl 1170.90513
[8] Hernández-Lerma, O., Lasserre, J. B.:
Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York 1996.
MR 1363487 |
Zbl 0840.93001
[9] Heyman, D. P., Sobel, M. J.:
Stochastic Models in Operations Research, Vol. II. Stochastic Optimization. McGraw-Hill, New York 1984.
Zbl 0531.90062
[13] Puterman, M. L.:
Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley and Sons, New York 1994.
MR 1270015 |
Zbl 1184.90170
[14] Topkis, D. M.:
Supermodularity and Complementarity. Princeton University Press, Princeton, New Jersey 1998.
MR 1614637