Previous |  Up |  Next

Article

Keywords:
$d$-copulas; fractal copulas; sample $d$-copulas of order $m$
Summary:
In this paper we analyze the construction of $d$-copulas including the ideas of Cuculescu and Theodorescu [5], Fredricks et al. [15], Mikusiński and Taylor [25] and Trutschnig and Fernández-Sánchez [33]. Some of these methods use iterative procedures to construct copulas with fractal supports. The main part of this paper is given in Section 3, where we introduce the sample $d$-copula of order $m$ with $m≥2$, the central idea is to use the above methodologies to construct a new copula based on a sample. The greatest advantage of the sample $d$-copula is the fact that it is already an approximating $d$-copula and that it is easily obtained. We will see that these new copulas provide a nice way to study multivariate data with an approximating copula which is simpler than the empirical multivariate copula, and that the empirical copula is the restriction to a grid of a sample $d$-copula of order $n$. These sample $d$-copulas can be used to make statistical inference about the distribution of the data, as shown in Section 3.
References:
[1] Alsina, C., Frank, M. J., Schweizer, B.: Associative Functions: Triangular Norms And Copulas. World Scientific Publishing Co., Singapore 2006. MR 2222258 | Zbl 1100.39023
[2] Berger, J. O., Bernardo, J. M.: Ordered group reference priors with application to the multinomial problem. Biometrika 79 (1992), 1, 25-37. DOI 10.1093/biomet/79.1.25 | MR 1158515 | Zbl 0763.62014
[3] Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G., Roncalli, T.: Copulas for Finance. A Reading Quide and Some Applications. Groupe de recherche opérationnelle, Crédit Lyonnais, Paris 2000.
[4] Cressie, N., Read, T. R. C.: Multinomial goodness-of-fit tests. J. Roy. Statist. Soc., Ser. B 46 (1984), 3, 440-464. MR 0790631 | Zbl 0571.62017
[5] Cuculescu, I., Theodorescu, R.: Copulas: Diagonals, tracks. Rev. Roumaine Math. Pures Appl. 46 (2001), 6, 731-742. MR 1929521 | Zbl 1032.60009
[6] Amo, E. de, Carrillo, M. Díaz, Fernández-Sánchez, J.: Measure-preserving functions and the independence copula. Mediterr. J. Math. 8 (2011), 431-450. DOI 10.1007/s00009-010-0073-9 | MR 2824591
[7] Amo, E. de, Carrillo, M. Díaz, Fernández-Sánchez, J.: Copulas and associated fractal sets. J. Math. Anal. Appl. 386 (2012), 528-541. DOI 10.1016/j.jmaa.2011.08.017 | MR 2834765
[8] Deheuvels, P.: La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d'indépendance. Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274-292. MR 0573609 | Zbl 0422.62037
[9] Durante, F., Quesada-Molina, J. J., Úbeda-Flores, M.: On a family of multivariate copulas for aggregation processes. Inform. Sci. 177 (2007), 5715-5724. DOI 10.1016/j.ins.2007.07.019 | MR 2362216 | Zbl 1132.68761
[10] Durante, F., Fernández-Sánchez, J.: Multivariate shuffles and approximation copulas. Statist. Probab. Lett. 80 (2010), 1827-1834. DOI 10.1016/j.spl.2010.08.008 | MR 2734248
[11] Durante, F., Fernández-Sánchez, J., Sempi, C.: Sklar's theorem obtained via regularization techniques. Nonlinear Anal. 75 (2012), 2, 769-774. DOI 10.1016/j.na.2011.09.006 | MR 2847456 | Zbl 1229.62062
[12] Durante, F., Fernández-Sánchez, J., Sempi, C.: A note on the notion of singular copula. Fuzzy Sets and Systems 211 (2013), 120-122. DOI 10.1016/j.fss.2012.04.005 | MR 2991801
[13] Fermanian, J. D., Radulović, D., Wegcamp, M.: Weak convergence of empirical copula. Bernoulli 10 (2004), 5, 847-860. DOI 10.3150/bj/1099579158 | MR 2093613
[14] Fernández-Sánchez, J., Nelsen, R. B., Úbeda-Flores, M.: Multivariate copulas, quasi-copulas and lattices. Statist. Probab. Lett. 81 (2011), 1365-1369. DOI 10.1016/j.spl.2011.04.004 | MR 2811851 | Zbl 1219.62086
[15] Fredricks, G. A., Nelsen, R. B., Rodríguez-Lallena, J. A.: Copulas with fractal supports. Insurance Math. Econom. 37 (2005), 42-48. DOI 10.1016/j.insmatheco.2004.12.004 | MR 2156595 | Zbl 1098.60018
[16] Genest, C., Rémillard, B., Beaudoin, D.: Goodness-of-fit tests for copulas: A review and a power study. Insurance Math. Econom. 44 (2009), 199-213. DOI 10.1016/j.insmatheco.2007.10.005 | MR 2517885 | Zbl 1161.91416
[17] Hernández-Cedillo, M. M.: Topics on Multivariate Copulas and Applications. Ph.D. Thesis, Universidad Nacional Autónoma de México 2013, preprint.
[18] Hofert, M., Kojadinovic, I., Maechler, M., Yan, J.: copula: Multivariate Dependence with Copulas. R package version 0.999-5. http://CRAN.R-project.org/package=copula, 2012.
[19] Hogg, R. H., Craig, A. T.: Introduction to Mathematical Statistics. Fourth edition. Collier Macmillan International Eds., New York-London 1978. MR 0467974
[20] Jaworski, P.: On copulas and their diagonals. Inform. Sci. 179 (2009), 2863-2871. DOI 10.1016/j.ins.2008.09.006 | MR 2547755 | Zbl 1171.62332
[21] Mahmoud, H. M.: Polya urn models. Texts Statist. Sci. Ser., Chapman and Hall/CRC, New York 2008. DOI 10.1201/9781420059847.ch3 | MR 2435823 | Zbl 1149.60005
[22] Mai, J. F., Scherer, M.: Simulating Copulas: Stochastic Models, Sampling Algorithms and Applications. Series in Quantitative Finance 4, Imperial College Press, London 2012. MR 2906392
[23] Marcus, M.: Some properties and applications of double stochastic matrices. Amer. Math. Monthly 67 (1960), 215-221. DOI 10.2307/2309679 | MR 0118732
[24] Mesiar, R., Sempi, C.: Ordinal sums and idempotent of copulas. Aequat. Math. 79, (2010), 1-2, 39-52. DOI 10.1007/s00010-010-0013-6 | MR 2640277
[25] Mikusiński, P., Taylor, M. D.: Some approximations of $n$-copulas. Metrika 72 (2010), 385-414. DOI 10.1007/s00184-009-0259-y | MR 2746583 | Zbl 1197.62050
[26] Nelsen, R. B.: An Introduction to Copulas. Lecture Notes in Statist. 139, second edition, Springer, New York 2006. MR 2197664 | Zbl 1152.62030
[27] Read, T. R. C., Cressie, N.: Goodness-of-fit Statistics for Discrete Multivariate Data. Springer Series in Statist., Springer, New York 1988. MR 0955054 | Zbl 0663.62065
[28] Rodríguez-Lallena, J. A., Úbeda-Flores, M.: Distribution functions of multivariate copulas. Statist. Probab. Lett. 64 (2003), 41-50. DOI 10.1016/S0167-7152(03)00129-9 | MR 1995808 | Zbl 1113.62330
[29] Rychlik, T.: Distributions and expectations of order statistics for possible dependent random variables. J. Multivariate Anal. 48 (1994), 31-42. DOI 10.1016/0047-259X(94)80003-E | MR 1256833
[30] Sherman, S.: Doubly stochastic matrices and complex vector spaces. Amer. J. Math. 77 (1955), 245-246. DOI 10.2307/2372529 | MR 0067840 | Zbl 0064.13204
[31] Siburg, K. F., Stoimenov, P. A.: Gluing copulas. Comm. Statist. Theory and Methods. 37 (2008), 3124-3134. DOI 10.1080/03610920802074844 | MR 2467756
[32] Sklar, A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. MR 0125600
[33] Trutschnig, W., Fernández-Sánchez, J.: Idempotent and multivariate copulas with fractal support. J. Statist. Plan. Infer. 142 (2012), 3086-3096. DOI 10.1016/j.jspi.2012.06.012 | MR 2956795
[34] Trutschnig, W.: Idempotent copulas with fractal support. Adv. Comp. Intel. 298, (2012), 3, 161-170. Zbl 1252.37073
Partner of
EuDML logo