Previous |  Up |  Next

Article

Keywords:
$F$-Yang-Mills field; stability
Summary:
In this paper, we define an $F$-Yang-Mills functional, and hence $F$-Yang-Mills fields. The first and the second variational formulas are calculated, and the stabilities of $F$-Yang-Mills fields on some submanifolds of the Euclidean spaces and the spheres are investigated, and hence the theories of Yang-Mills fields are generalized in this paper.
References:
[1] Bourguignon, J.—P., Lawson, H. B.: Stability and isolation phenomena for Yang–Mills fields. Comm. Math. Phys. 79 (2) (1981), 189–230. DOI 10.1007/BF01942061 | MR 0612248 | Zbl 0475.53060
[2] Bourguignon, J.–P., Lawson, H. B., Simons, J.: Stability and gap phenomena for Yang-Mills fields. Proc. Acad. Sci. U.S.A. 76 (1979), 1550–1553. DOI 10.1073/pnas.76.4.1550 | MR 0526178 | Zbl 0408.53023
[3] Chen, Q., Zhou, Z.–R.: On gap properties and instabilities of p-Yang-Mills fields. Canad. J. Math. 59 (6) (2007), 1245–1259. DOI 10.4153/CJM-2007-053-x | MR 2363065 | Zbl 1131.58010
[4] Sibner, L. M., Sibner, R. J., Uhlenbeck, K.: [Solutions to Yang–Mills equations that are not self–dual]. Proc. Natl. Acad. Sci. USA 86 (1989), 8610–8613. DOI 10.1073/pnas.86.22.8610 | MR 1023811 | Zbl 0731.53031
[5] Xin, Y. L.: Instability theorems of Yang-Mills fields. Acta Math. Sci. 3 (1) (1983), 103–112. MR 0741362 | Zbl 0543.58018
Partner of
EuDML logo