[Br1] Breit D.: Regularitätssätze für Variationsprobleme mit anisotropen Wachstumsbedingungen. PhD thesis, Saarland University, 2009.
[BFZ] Bildhauer M., Fuchs M., Zhong X.:
A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids. Manuscripta Math. 116 (2005), no. 2, 135–156.
DOI 10.1007/s00229-004-0523-4 |
MR 2122416 |
Zbl 1116.49018
[ELM2] Esposito L., Leonetti F., Mingione G.:
Regularity for minimizers of irregular integrals with $(p,q)$-growth. Forum Mathematicum 14 (2002), 245–272.
DOI 10.1515/form.2002.011 |
MR 1880913
[Gi] Giaquinta M.:
Introduction to Regularity Theory for Nonlinear Elliptic Systems. Birkhäuser, Basel-Boston-Berlin, 1993.
MR 1239172 |
Zbl 0786.35001
[KMS] Kaplický P., Málek J., Stará J.:
$C^{1,\alpha}$-solutions to a class of nonlinear fluids in two dimensions --- stationary Dirichlet problem. Zap. Nauchn. Sem. POMI 259 (1999), 122–144.
Zbl 0978.35046
[La] Ladyzhenskaya O.A.:
The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York-London-Paris, 1969.
MR 0254401 |
Zbl 0184.52603
[MNRR] Málek J., Nečas J., Rokyta M., Růžička M.:
Weak and Measure Valued Solutions to Evolutionary PDEs. Chapman & Hall, London-Weinheim-New York, 1996.
MR 1409366 |
Zbl 0851.35002
[Mo] Morrey C.B.:
Multiple integrals in the calculus of variations. Grundlehren der math. Wiss. in Einzeldarstellungen, 130, Springer, Berlin-Heidelberg, 1966.
MR 2492985 |
Zbl 1213.49002
[Wo] Wolf J.:
Interior $C^{1,\alpha}$-regularity of weak solutions to the equations of stationary motions of certain non-Newtonian fluids in two dimensions. Boll. Unione Mat. Ital. Sez. B (8) 10 (2007), 317–340.
MR 2339444