Previous |  Up |  Next

Article

MSC: 15A80, 15B05, 90C27
Keywords:
max-plus algebra; eigenvalue; sub-partition of an integer; Toeplitz matrix
Summary:
The paper presents an iterative algorithm for computing the maximum cycle mean (or eigenvalue) of $n\times n$ triangular Toeplitz matrix in max-plus algebra. The problem is solved by an iterative algorithm which is applied to special cycles. These cycles of triangular Toeplitz matrices are characterized by sub-partitions of $n-1$.
References:
[1] Butkovič, P.: Max-linear Systems: Theory and Algorithms. Springer-Verlag, London 2010. MR 2681232 | Zbl 1202.15032
[2] Cuninghame-Green, R. A.: Minimax Algebra. Springer-Verlag, Berlin 1979. MR 0580321 | Zbl 0739.90073
[3] Heidergott, B., Olsder, G. J., Woude, J. van der: Max Plus at Work. Modeling and Analysis of Synchronized Systems. Princeton University Press 2004.
[4] Heinig, G.: Not every matrix is similar to a Toeplitz matrix. Linear Algebra Appl. 332-334 (2001), 519-531. MR 1839449 | Zbl 0985.15013
[5] Karp, R. M.: A characterization of the minimum cycle mean in a digraph. Discrete Math. 23 (1978), 309-311. MR 0523080 | Zbl 0386.05032
[6] Landau, H. J.: Tile inverse eigenvalue problem for real symmetric Toeplitz matrices. J. Amer. Math. Soc. 7 (1994), 749-767. DOI 10.1090/S0894-0347-1994-1234570-6 | MR 1234570
[7] Plavka, J.: Eigenproblem for monotone and Toeplitz matrices in a max-algebra. Optimization 53 (2004), 95-101. DOI 10.1080/02331930410001661497 | MR 2040637 | Zbl 1079.93033
[8] Szabó, P.: A short note on the weighted sub-partition mean of integers. Oper. Res. Lett. 37(5) (2009), 356-358. DOI 10.1016/j.orl.2009.04.003 | MR 2573448 | Zbl 1231.05017
[9] Zimmermann, K.: Extremální algebra (in Czech). Ekonomický ústav SAV, Praha 1976.
Partner of
EuDML logo