Article
Keywords:
max-plus algebra; eigenvalue; sub-partition of an integer; Toeplitz matrix
Summary:
The paper presents an iterative algorithm for computing the maximum cycle mean (or eigenvalue) of $n\times n$ triangular Toeplitz matrix in max-plus algebra. The problem is solved by an iterative algorithm which is applied to special cycles. These cycles of triangular Toeplitz matrices are characterized by sub-partitions of $n-1$.
References:
[3] Heidergott, B., Olsder, G. J., Woude, J. van der: Max Plus at Work. Modeling and Analysis of Synchronized Systems. Princeton University Press 2004.
[4] Heinig, G.:
Not every matrix is similar to a Toeplitz matrix. Linear Algebra Appl. 332-334 (2001), 519-531.
MR 1839449 |
Zbl 0985.15013
[5] Karp, R. M.:
A characterization of the minimum cycle mean in a digraph. Discrete Math. 23 (1978), 309-311.
MR 0523080 |
Zbl 0386.05032
[9] Zimmermann, K.: Extremální algebra (in Czech). Ekonomický ústav SAV, Praha 1976.