[1] Basin, M.:
New Trends in optimal Filtering and Control for Polynomial and Time-Delay Systems. Lecture Notes in Control and Inform. Sci. 380, Springer-Verlag, Berlin - Heidelberg 2008.
MR 2462136 |
Zbl 1160.93001
[2] Basin, M., Martanez-Zniga, R.:
Optimal linear filtering over observations with multiple delays. Internat. J. Robust Nonlinear Control 14 (2004), 8, 685-696.
DOI 10.1002/rnc.917 |
MR 2058560
[3] Basin, M., Rodriguez-Gonzalez, J., Fridman, L., Acosta, P.:
Integral sliding mode design for robust filtering and control of linear stochastic time-delay systems. Internat. J. Robust Nonlinear Control 15 (2005), 9, 407-421.
DOI 10.1002/rnc.995 |
MR 2139465 |
Zbl 1100.93012
[5] Boukas, E.-K., Liu, Z.-K.:
Deterministic and Stochastic Time Delay Systems. Birkhauser, Boston 2002.
Zbl 1056.93001
[6] Carravetta, F., Palumbo, P., Pepe, P.: Quadratic optimal control of linear systems with time-varying input delay. In: Proc. 49th IEEE Conf. on Dec. and Control (CDC), Atlanta 2010, pp. 4996-5000.
[7] Carravetta, F., Palumbo, P., Pepe, P.: Memoryless solution to the infinite horizon optimal control of LTI systems with delayed input. In: Proc. IASTED Asian Conference on Modelling, Identification and Control (AsiaMIC), Phuket 2012.
[8] Chang, Y. P., Tsai, J. S. H., Shieh, L. S.: Optimal digital redesign of hybrid cascaded input-delay systems under state and control constraints. IEEE Trans. Circuits and Systems I - Fundamental Theory and Applications 49 (2002), 9, 1382-1392.
[9] Chopra, N., Berestesky, P., Spong, M. W.:
Bilateral teleoperation over unreliable communication networks. IEEE Trans. Control Systems Technol. 16 (2008), 304-313.
DOI 10.1109/TCST.2007.903397
[11] Delfour, M. C.:
The linear quadratic optimal control problem with delays in state and control variables: A state space approach. SIAM J. Control Optim. 24 (1986), 835-883.
DOI 10.1137/0324053 |
MR 0854061 |
Zbl 0606.93037
[14] Gu, K., Kharitonov, V. L., Chen, J.:
Stability of Time Delay Systems. Birkhauser, Boston 2003.
Zbl 1039.34067
[16] Germani, A., Manes, C., Pepe, P.: Implementation of an LQG control scheme for linear systems with delayed feedback action. In: Proc. 3rd European Control Conference (ECC), Vol. 4, Rome 1995, pp. 2886-2891.
[18] Kuang, Y.:
Delay Differential Equations with Applications in Population Dynamics. Series Math. Sci. Engrg. 191, Academic Press, Boston 1993.
MR 1218880 |
Zbl 0777.34002
[19] Kojima, A., Ishijima, S.: Formulas on preview and delayed $H_\infty$ control. In: Proc. 42nd IEEE Conf. on Dec. and Control (CDC), Mauii 2003, pp. 6532-6538.
[20] Krstic, M.:
Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Birkauser, Boston 2009.
MR 2553294 |
Zbl 1181.93003
[21] Ma, Y. C., Huang, L. F., Zhang, Q. L.:
Robust guaranteed cost $H\sb \infty$ control for an uncertain time-varying delay system. (Chinese) Acta Phys. Sinica 56 (2007), 7, 3744-3752.
MR 2356808
[22] Milman, M. H.:
Approximating the linear quadratic optimal control law for hereditary systems with delays in the control. SIAM J. Control Optim. 2 (1988), 291-320.
DOI 10.1137/0326017 |
MR 0929803 |
Zbl 0651.93025
[24] Mondié, S., Michiels, W.:
Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Trans. Automat. Control 48, 12, 2207-2212.
DOI 10.1109/TAC.2003.820147 |
MR 2027246
[25] Niculescu, S.-I.:
Delay Effects on Stability, A Robust Control Approach. LNCIS 269, Springer-Verlag, London Limeted 2001.
MR 1880658 |
Zbl 0997.93001
[26] Kuang, Y.:
Delay Differential Equations With Applications in Population Dynamics. Math. Sci. Engrg. 191, Academic Press Inc., San Diego 1993.
MR 1218880 |
Zbl 0777.34002
[30] Polushin, I., Marquez, H. J., Tayebi, A., Liu, P. X.:
A multichannel IOS small gain theorm for systems with multiple time-varying communication delays. IEEE Trans. Automat. Control 54 (2009), 404-409.
DOI 10.1109/TAC.2008.2009582 |
MR 2491974
[32] Wang, P. K. C.:
Optimal control for discrete-time systems with time-lag controls. IEEE Trans. Automat. Control 19 (1975), 425-426.
DOI 10.1109/TAC.1975.1100968