[2] Bro, R.: PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems 38 (1997), 149-171.
[3] Bro, R.: Multi-way Analysis in the Food Industry: Models, Algorithms, and Applications. Ph.D. thesis. University of Amsterdam Amsterdam (1998).
[4] Bro, R.:
Exploratory study of sugar production using fluorescence spectroscopy and multi-way analysis. Chemometrics and Intelligent Laboratory Systems 46 133-147 (1999).
DOI 10.1016/S0169-7439(98)00181-6
[5] Carroll, J. D., Chang, J.-J.:
Analysis of individual differences in multidimensional scaling via an N-way generalization of `Eckart-Young' decomposition. Psychometrika 35 283-319 (1970).
DOI 10.1007/BF02310791 |
Zbl 0202.19101
[6] Cichocki, A., Zdunek, R., Amari, S.:
Nonnegative matrix and tensor factorization. IEEE Signal Processing Magazine 25 142-145 (2008).
DOI 10.1109/MSP.2008.4408452
[7] Cichocki, A., Zdunek, R., Choi, S., Plemmons, R., Amari, S.: Non-negative tensor factorization using alpha and beta divergences. Proc. of the 32nd International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, April 2007.
[8] Cichocki, A., Zdunek, R., Choi, S., Plemmons, R., Amari, S.: Novel multi-layer non-negative tensor factorization with sparsity constraints. Adaptive and Natural Computing Algorithms. Lecture Notes in Computer Science 4432 Proc. of the 8th International Conference on Adaptive and Natural Computing Algorithms, Warsaw, Poland, April 2007 Springer, Berlin.
[9] Cichocki, A., Zdunek, R., Phan, A. H., Amari, S.: Nonnegative Matrix and Tensor Factorizations, Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley Chichester (2009).
[10] Comon, P., Luciani, X., Almeida, A. L. F. de:
Tensor decompositions, alternating least squares and other tales. Journal of Chemometrics 23 393-405 (2009).
DOI 10.1002/cem.1236
[11] Dhillon, I. S.: Fast Newton-type Methods for Nonnegative Matrix and Tensor Approximation. Talk given at the NSF Workshop, Future Directions in Tensor-Based Computation and Modeling, February 2009.
[14] Han, L., Neumann, M., Prasad, U.:
Alternating projected Barzilai-Borwein methods for nonnegative matrix factorization. ETNA, Electron. Trans. Numer. Anal. 36 54-82, electronic only (2009-2010).
MR 2779998 |
Zbl 1191.65020
[16] Kim, H., Park, H., Elden, L.: Non-negative tensor factorization based on alternating large-scale non-negativity-constrained least squares. Proceedings of IEEE 7th International Conference on Bioinformatics and Bioengineering (BIBE07), Vol. II 1147-1151 (2007).
[18] Lee, D. D., Seung, H. S.:
Learning the parts of objects by non-negative matrix factorization. Nature 401 788-791 (1999).
DOI 10.1038/44565
[19] Lim, L., Comon, P.:
Nonnegative approximations of nonnegative tensors. Journal of Chemometrics 23 432-441 (2009).
DOI 10.1002/cem.1244
[20] Mitchell, B. C., Burdick, D. S.:
Slowly converging PARAFAC sequences: Swamps and two-factor degeneracies. Journal of Chemometrics 8 155-168 (1994).
DOI 10.1002/cem.1180080207
[22] Nion, D., Lathauwer, L. De:
An enhanced line search scheme for complex-valued tensor decompositions. Application in DS-CDMA. Signal Process. 88 749-755 (2008).
Zbl 1186.94262
[23] Paatero, P.: A weighted non-negative least squares algorithm for three-way `PARAFAC' factor analysis. Chemometrics and Intelligent Laboratory Systems 38 223-242 (1997).
[24] Paatero, P., Tapper, U.:
Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5 111-126 (1994).
DOI 10.1002/env.3170050203
[26] Rayens, W. S., Mitchell, B. C.:
Two-factor degeneracies and a stabilization of PARAFAC. Chemometrics and Intelligent Laboratory Systems 38 173-181 (1997).
DOI 10.1016/S0169-7439(97)00033-6
[28] Royer, J.-P., Thirion-Moreau, N., Comon, P.:
Computing the polyadic decomposition of nonnegative third order tensors. Signal Process. 91 2159-2171 (2011).
Zbl 1219.94048
[29] Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to statistics and computer vision. ICML 2005: Proceedings of the 22nd International Conference on Machine Learning ACM New York 792-799 (2005).
[30] Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences. Wiley Chichester (2004).
[32] MATLAB 7.5.0. The Mathworks (2008).