Previous |  Up |  Next

Article

Keywords:
rotational lattice; lattice with automorphism; lattice with involution; distributivity; lattice variety
Summary:
A rotational lattice is a structure $\langle L;\vee ,\wedge , g\rangle $ where $L=\langle L;\vee ,\wedge \rangle $ is a lattice and $g$ is a lattice automorphism of finite order. We describe the subdirectly irreducible distributive rotational lattices. Using Jónsson’s lemma, this leads to a description of all varieties of distributive rotational lattices.
References:
[1] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Graduate Texts in Mathematics 78, Springer-Verlag, New York–Berlin, 1981. The Millennium Edition: http://www.math.uwaterloo.ca/s̃nburris/htdocs/ualg.html MR 0648287 | Zbl 0478.08001
[2] Chajda, I., Czédli, G: How to generate the involution lattice of quasiorders?. Studia Sci. Math. Hungar. 32 (1996), 415–427. MR 1432183 | Zbl 0864.06003
[3] Chajda, I., Czédli, G., Halaš, R.: Independent joins of tolerance factorable varieties. Algebra Universalis 69 (2013), 83–92. DOI 10.1007/s00012-012-0213-0 | MR 3029971
[4] Czédli, G., Szabó, L.: Quasiorders of lattices versus pairs of congruences. Acta Sci. Math. (Szeged) 60 (1995), 207–211. MR 1348689 | Zbl 0829.06008
[5] Dziobiak, W., Ježek, J., Maróti, M.: Minimal varieties and quasivarieties of semilattices with one automorphism. Semigroup Forum 78 (2009), 253–261. DOI 10.1007/s00233-008-9087-z | MR 2486638 | Zbl 1171.08002
[6] Grätzer, G.:: Lattice Theory: Foundation. Birkhäuser Verlag, Basel, 2011. MR 2768581 | Zbl 1233.06001
[7] Ježek, J.: Subdirectly irreducible semilattices with an automorphism. Semigroup Forum 43 (1991), 178–186. DOI 10.1007/BF02574263 | MR 1114689 | Zbl 0770.08004
[8] Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110–121. MR 0237402
[9] Maróti, M.: Semilattices with a group of automorphisms. Algebra Universalis 38 (1997), 238–265. DOI 10.1007/s000120050054 | MR 1619766
[10] Nagy, I. V.: Minimal quasivarieties of semilattices over commutative groups. Algebra Universalis (to appear).
[11] Vetterlein, T.: Boolean algebras with an automorphism group: a framework for Łukasiewicz logic. J. Mult.-Val. Log. Soft Comput. 14 (2008), 51–67. MR 2456707 | Zbl 1236.03018
Partner of
EuDML logo