Previous |  Up |  Next

Article

Keywords:
global finite-time observer; nonlinear system; homogeneity
Summary:
Global finite-time observers are designed for a class of nonlinear systems with bounded varying rational powers imposed on the increments of the nonlinearities whose solutions exist and are unique for all positive time. The global finite-time observers designed in this paper are with two homogeneous terms. The global finite-time convergence of the observation error system is achieved by combining global asymptotic stability and local finite-time stability.
References:
[1] Bestle, D., Zeitz, M.: Cannonical form observer design for non-linear time-variable systems. Internat. J. Control 38 (1983), 419-431. DOI 10.1080/00207178308933084 | MR 0708425
[2] Bhat, S. P., Bernstein, D. S.: Finite-time stability of continous autonomous systems. SIAM J. Control Optim. 38 (2000), 751-766. DOI 10.1137/S0363012997321358 | MR 1756893
[3] Bhat, S. P., Bernstein, D. S.: Geometric homogeneity with applications to finite-time stability. Math. Control Sign. Systems 17 (2005), 101-127. DOI 10.1007/s00498-005-0151-x | MR 2150956 | Zbl 1110.34033
[4] Chen, M. S., Chen, C. C.: Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances. IEEE Trans. Automat. Control 52 (2007), 2365-2369. DOI 10.1109/TAC.2007.910724 | MR 2374276
[5] Engel, R., Kreisselmeier, G.: A continuous-time observer which converges in finite time. IEEE Trans. Automat. Control 47 (2002), 1202-1204. DOI 10.1109/TAC.2002.800673 | MR 1911500
[6] Gauthier, J. P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Automat. Control 37 (1992), 875-880. DOI 10.1109/9.256352 | MR 1164571 | Zbl 0775.93020
[7] Hammouri, H., Targui, B., Armanet, F.: High gain observer based on a triangular structure. Internat. J. Robust Nonlinear Control 12 (2002), 497-518. DOI 10.1002/rnc.638 | MR 1895967 | Zbl 1006.93007
[8] Hong, Y., Xu, Y., Huang, J.: Finite-time control for manipulators. Systems Control Lett. 46 (2002), 243-253. DOI 10.1016/S0167-6911(02)00130-5 | MR 2010242
[9] Kotta, Ü.: Application of inverse system for linearization and decoupling. Systems Control Lett. 8 (1987), 453-457. DOI 10.1016/0167-6911(87)90086-7 | Zbl 0634.93039
[10] Krener, A. J., Isidori, A.: Linearization by output injection and nonlinear observers. Syst.ems Control Lett. 3 (1983), 47-52. MR 0713426 | Zbl 0524.93030
[11] Krishnamurthy, P., Khorrami, F., Chandra, R. S.: Global high-gain-based observer and backstepping controller for generalized output-feedback canonical form. IEEE Trans. Automat. Control 48 (2003), 2277-2284. DOI 10.1109/TAC.2003.820226 | MR 2027259
[12] Levine, J., Marino, R.: Nonlinear systems immersion, observers and finite dimensional filters. Systems Control Lett. 7 (1986), 133-142. DOI 10.1016/0167-6911(86)90019-8 | MR 0836303
[13] Li, J., Qian, C., Frye, M. T.: A dual-observer design for global output feedback stabilization of nonlinear systems with low-order and high-order nonlinearities. Internat. J. Robust Nonlinear Control 19 (2009), 1697-1720. DOI 10.1002/rnc.1401 | MR 2553558
[14] Ménard, T., Moulay, E., Perruquetti, W.: A global high-gain finite-time observer. IEEE Trans. Automat. Control 55 (2010), 1500-1506. DOI 10.1109/TAC.2010.2045698 | MR 2668964
[15] Moulay, E., Perruquetti, W.: Finite time stability and stabilization of a class of continuous systems. J. Math. Anal. Appl. 323 (2006), 1430-1443. DOI 10.1016/j.jmaa.2005.11.046 | MR 2260193 | Zbl 1131.93043
[16] Moulay, E., Perruquetti, W.: Finite-time stability conditions for non-autonomous continuous systems. Internat. J. Control 81 (2008), 797-803. DOI 10.1080/00207170701650303 | MR 2406886 | Zbl 1152.34353
[17] Perruquetti, W., Floquet, T., Moulay, E.: Finite-time observers: application to secure communication. IEEE Trans. Automat. Control 53 (2008), 356-360. DOI 10.1109/TAC.2007.914264 | MR 2391590
[18] Pertew, A. M., Marquez, H. J., Zhao, Q.: $H_\infty$ observer design for Lipschitz nonlinear systems. IEEE Trans. Automat. Control 51 (2006), 1211-1216. DOI 10.1109/TAC.2006.878784 | MR 2239562
[19] Praly, L.: Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate. IEEE Trans. Automat. Control 48 (2003), 1103-1108. DOI 10.1109/TAC.2003.812819 | MR 1986287
[20] Raghavan, S., Hedrick, J. K.: Observer design for a class of nonlinear systems. Internat. J. Control 59 (1994), 515-528. DOI 10.1080/00207179408923090 | MR 1261285 | Zbl 0802.93007
[21] Rajamani, R.: Observers for Lipschitz nonlinear systems. IEEE Trans. Automat. Control 43 (1998), 397-401. DOI 10.1109/9.661604 | MR 1614812 | Zbl 0905.93009
[22] Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Systems Control Lett. 19 (1992), 467-473. DOI 10.1016/0167-6911(92)90078-7 | MR 1195304 | Zbl 0762.34032
[23] Shen, Y., Huang, Y.: Uniformly observable and globally Lipschitzian nonlinear systems admit global finite-time observers. IEEE Trans. Automat. Control 54 (2009), 2621-2625. DOI 10.1109/TAC.2009.2029298 | MR 2571925
[24] Shen, Y., Xia, X.: Semi-global finite-time observers for nonlinear systems. Automatica 44 (2008), 3152-3156. DOI 10.1016/j.automatica.2008.05.015 | MR 2531419 | Zbl 1153.93332
[25] Shen, Y., Xia, X.: Semi-global finite-time observers for a class of non-Lipschitz systems. In: Nolcos, Bologna 2010, pp. 421-426.
[26] Shen, Y., Xia, X.: Global asymptotical stability and global finite-time stability for nonlinear homogeneous systems. In: 18th IFAC World Congress, Milan 2011, pp. 4644-4647.
[27] Thau, F. E.: Observing the state of nonlinear dynamic systems. Internat. J. Control 17 (1973), 471-479. DOI 10.1080/00207177308932395
[28] Venkataraman, S. T., Gulati, S.: Terminal slider control of nonlinear systems. In: Proc. IEEE International Conference of Advanced Robotics, Pisa 1990, pp. 2513-2514.
[29] Xia, X., Gao, W.: Nonlinear observer design by observer error linearization. SIAM J. Control Optim. 27 (1989), 199-216. DOI 10.1137/0327011 | MR 0980230 | Zbl 0667.93014
[30] Zeitz, M.: The extended Luenberger observer for nonlinear systems. Systems Control Lett. 9 (1987), 149-156. DOI 10.1016/0167-6911(87)90021-1 | MR 0906234 | Zbl 0624.93012
Partner of
EuDML logo