[1] Bezdek, J. C.:
Analysis of Fuzzy Information. CRC-Press, Boca Raton 1988.
Zbl 0648.00013
[2] Calvo, T., Mayor, G., Mesiar, R.:
Aggregation Operators. New Trends and Applications, Physica-Verlag, Heidelberg 2002.
MR 1936383 |
Zbl 0983.00020
[4] Dubois, D., Kerre, E., Mesiar, R., Prade, H.:
Fuzzy interval analysis. In: Fundamentals of Fuzzy Sets, Kluwer, Dordrecht 2000, pp. 483-581.
MR 1890240 |
Zbl 0988.26020
[5] Dubois, D., Prade, H.:
Possibility Theory. An Approach to Computerized Processing of Uncertainty. Plenum Press, New York 1988.
MR 1104217 |
Zbl 0703.68004
[7] Giachetti, R. E., Young, R. E.:
A parametric representation of fuzzy numbers and their arithmetic operators. Fuzzy Sets and Systems 91 (1997), 185-202.
MR 1480045 |
Zbl 0920.04008
[8] Hartley, R. V. L.: Transmission of information. Bell System Techn. J. 7 (1928), 3, 535-563.
[9] Havrda, J., Charvát, F.:
Quantification method of classifications processes. Concept of structural a-entropy. Kybernetika 3 (1967), 1, 30-35.
MR 0209067
[10] Fériet, J. Kampé de:
Théories de l'information. Springer, Berlin 1974.
MR 0371504
[11] Fériet, J. Kampé de, Forte, B.: Information et probabilité. C. R. Acad. Sci. Paris, Sér. A 265 1967, 110-114; 142-146; 350-353.
[12] Kerre, E. E., Wang, X.: Reasonable properties for the ordering of fuzzy quantities. Part I., Part II. Fuzzy Sets and Systems 118 (2001), 375-385; 387-405.
[14] Klir, G. J., Folger, T. A.:
Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs 1988.
MR 0930102 |
Zbl 0675.94025
[16] Kolesárová, A., Vivona, D.:
Entropy of T-sums and T-products of $L-R$ fuzzy numbers. Kybernetika 37 (2001), 2, 127-145.
MR 1839223 |
Zbl 1265.03020
[19] Mareš, M.: Compenzational vagueness. In: Proc. EUSFLAT'2007 (M. Štepnička, V. Novák, and U. Bodenhofer, eds.), Ostrava 2007, pp. 179-184.
[20] Mareš, M., Mesiar, R.:
Verbally generated fuzzy quantities. In: Aggregation Operators. New Trends and Applications(T. Calvo, G. Mayor, and R. Mesiar (eds.), Physica-Verlag, Heidelberg 2002, pp. 291-353.
MR 1936394 |
Zbl 1039.68128
[21] Mareš, M., Mesiar, R.: Information in granulated data sources. In: Proc. Internat. Conf. on Soft Computing, Computing with Words and Perceptions in Systems (W. Pedrycz, R. Aliev, Mo Jamshidi, and B. Turksen, eds.), Antalya 2007.
[25] and, C. Shannon, Weaver, W.:
A mathematical theory of communication. Bell System Techn. J. 27 (1948), 379-423; 623-653.
MR 0026286
[26] Sugeno, M.: Theory of Fuzzy Integrals and Its Applications. PhD. Thesis, Tokyo Institute of Technology, 1974.
[27] Vivona, D., Divari, M.: On a conditional information for fuzzy sets. In: Proc. AGOP'2005, Lugano 2005, pp. 147-149.
[28] Winkelbauer, K.:
Communication channels with finite past history. In: Trans. Second Prague Conference, Statistical Decision Functions and Random Processes, Prague 1959. Publishing House of the Czechoslovak Academy of Sci., Prague 1960, pp. 685-831.
MR 0129056 |
Zbl 0161.16904
[30] Zadeh, L. A.:
The concept of a linguistic variable and its application to approximate reasoning. Inform. Sci. (1975), Part I: 8, 199-249; Part II: 8, 301-357; Part III: 9, 43-80.
DOI 10.1016/0020-0255(75)90017-1 |
Zbl 0404.68075
[31] Zadeh, L. A.:
Fuzzy logic $=$ Computing with words. IEEE Trans. Fuzzy Systems 2 (1977), 103-111.
Zbl 0947.03038
[33] Zadeh, L. A.: Yes, no and relatively. Chemtech (1987), June: 340-344; July: 406-410.
[34] Zadeh, L. A.:
From computing with numbers to computing with words - from manipulation of measurements to manipulation of perception. IEEE Trans. Circuits Systems 45 (1999), 105-119.
MR 1683230
[35] Zadeh, L. A.: The concept of cointensive precisation - A key to mechanization of natural language understanding. In: Proc. IPMU, Paris 2006, pp. 13-15.