Previous |  Up |  Next

Article

Title: Uppers to zero in $R[x]$ and almost principal ideals (English)
Author: Borna, Keivan
Author: Mohajer-Naser, Abolfazl
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 2
Year: 2013
Pages: 565-572
Summary lang: English
.
Category: math
.
Summary: Let $R$ be an integral domain with quotient field $K$ and $f(x)$ a polynomial of positive degree in $K[x]$. In this paper we develop a method for studying almost principal uppers to zero ideals. More precisely, we prove that uppers to zero divisorial ideals of the form $I = f(x)K[x] \cap R[x]$ are almost principal in the following two cases: – $J$, the ideal generated by the leading coefficients of $I$, satisfies $J^{-1} = R$. – $I^{-1}$ as the $R[x]$-submodule of $K(x)$ is of finite type. Furthermore we prove that for $I = f(x)K[x] \cap R[x]$ we have: – $I^{-1}\cap K[x]=(I:_{K(x)}I)$. – If there exists $p/q \in I^{-1}-K[x]$, then $(q,f)\neq 1$ in $K[x]$. If in addition $q$ is irreducible and $I$ is almost principal, then $I' = q(x)K[x] \cap R[x]$ is an almost principal upper to zero. Finally we show that a Schreier domain $R$ is a greatest common divisor domain if and only if every upper to zero in $R[x]$ contains a primitive polynomial. (English)
Keyword: almost principal ideal
Keyword: divisorial ideal
Keyword: greatest common divisor domain
Keyword: Schreier domain
Keyword: uppers to zero
MSC: 13A05
MSC: 13A15
MSC: 13B25
MSC: 13F15
idZBL: Zbl 06236432
idMR: MR3073979
DOI: 10.1007/s10587-013-0038-9
.
Date available: 2013-07-18T15:11:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143333
.
Reference: [1] Anderson, D. D., Anderson, D. F.: Generalized GCD domains.Comment. Math. Univ. St. Pauli 28 (1980), 215-221. Zbl 0434.13001, MR 0578675
Reference: [2] Anderson, D. D., Dumitrescu, T., Zafrullah, M.: Quasi-Schreier domains. II.Commun. Algebra 35 (2007), 2096-2104. Zbl 1119.13001, MR 2331832, 10.1080/00927870701302107
Reference: [3] Anderson, D. D., Zafrullah, M.: The Schreier property and Gauss' Lemma.Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 10 (2007), 43-62. Zbl 1129.13025, MR 2310957
Reference: [4] Cohn, P. M.: Bezout rings and their subrings.Proc. Camb. Philos. Soc. 64 (1968), 251-264. Zbl 0157.08401, MR 0222065, 10.1017/S0305004100042791
Reference: [5] Gilmer, R.: Multiplicative Ideal Theory. Pure and Applied Mathematics. Vol. 12.Marcel Dekker New York (1972). MR 0427289
Reference: [6] Hamann, E., Houston, E., Johnson, J. L.: Properties of uppers to zero in $R[x]$.Pac. J. Math. 135 (1988), 65-79. Zbl 0627.13007, MR 0965685, 10.2140/pjm.1988.135.65
Reference: [7] Houston, E.: Uppers to zero in polynomial rings.Multiplicative Ideal Theory in Commutative Algebra. A Tribute to the Work of Robert Gilmer J. W. Brewer et al. Springer New York (2006), 243-261. Zbl 1116.13014, MR 2265813
Reference: [8] Houston, E., Zafrullah, M.: UMV-domains.Arithmetical Properties of Commutative Rings and Monoids. Lecture Notes in Pure and Applied Mathematics 241 S. T. Chapman Chapman & Hall/CRC Boca Raton (2005), 304-315. Zbl 1079.13015, MR 2140703
Reference: [9] Kaplansky, I.: Commutative Rings.Allyn and Bacon Boston (1970). Zbl 0203.34601, MR 0254021
Reference: [10] Tang, H. T.: Gauss' lemma.Proc. Am. Math. Soc. 35 (1972), 372-376. Zbl 0266.13007, MR 0302638
Reference: [11] Zafrullah, M.: The $D+XD_S[X]$ construction from GCD-domains.J. Pure Appl. Algebra 50 (1988), 93-107. MR 0931909, 10.1016/0022-4049(88)90006-0
Reference: [12] Zafrullah, M.: What $v$-coprimality can do for you.Multiplicative Ideal Theory in Commutative Algebra. A Tribute to the Work of Robert Gilmer J. W. Brewer et al. Springer New York (2006), 387-404. Zbl 1138.13001, MR 2265821
.

Files

Files Size Format View
CzechMathJ_63-2013-2_20.pdf 246.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo