Title:
|
Uppers to zero in $R[x]$ and almost principal ideals (English) |
Author:
|
Borna, Keivan |
Author:
|
Mohajer-Naser, Abolfazl |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
63 |
Issue:
|
2 |
Year:
|
2013 |
Pages:
|
565-572 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be an integral domain with quotient field $K$ and $f(x)$ a polynomial of positive degree in $K[x]$. In this paper we develop a method for studying almost principal uppers to zero ideals. More precisely, we prove that uppers to zero divisorial ideals of the form $I = f(x)K[x] \cap R[x]$ are almost principal in the following two cases: – $J$, the ideal generated by the leading coefficients of $I$, satisfies $J^{-1} = R$. – $I^{-1}$ as the $R[x]$-submodule of $K(x)$ is of finite type. Furthermore we prove that for $I = f(x)K[x] \cap R[x]$ we have: – $I^{-1}\cap K[x]=(I:_{K(x)}I)$. – If there exists $p/q \in I^{-1}-K[x]$, then $(q,f)\neq 1$ in $K[x]$. If in addition $q$ is irreducible and $I$ is almost principal, then $I' = q(x)K[x] \cap R[x]$ is an almost principal upper to zero. Finally we show that a Schreier domain $R$ is a greatest common divisor domain if and only if every upper to zero in $R[x]$ contains a primitive polynomial. (English) |
Keyword:
|
almost principal ideal |
Keyword:
|
divisorial ideal |
Keyword:
|
greatest common divisor domain |
Keyword:
|
Schreier domain |
Keyword:
|
uppers to zero |
MSC:
|
13A05 |
MSC:
|
13A15 |
MSC:
|
13B25 |
MSC:
|
13F15 |
idZBL:
|
Zbl 06236432 |
idMR:
|
MR3073979 |
DOI:
|
10.1007/s10587-013-0038-9 |
. |
Date available:
|
2013-07-18T15:11:18Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143333 |
. |
Reference:
|
[1] Anderson, D. D., Anderson, D. F.: Generalized GCD domains.Comment. Math. Univ. St. Pauli 28 (1980), 215-221. Zbl 0434.13001, MR 0578675 |
Reference:
|
[2] Anderson, D. D., Dumitrescu, T., Zafrullah, M.: Quasi-Schreier domains. II.Commun. Algebra 35 (2007), 2096-2104. Zbl 1119.13001, MR 2331832, 10.1080/00927870701302107 |
Reference:
|
[3] Anderson, D. D., Zafrullah, M.: The Schreier property and Gauss' Lemma.Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 10 (2007), 43-62. Zbl 1129.13025, MR 2310957 |
Reference:
|
[4] Cohn, P. M.: Bezout rings and their subrings.Proc. Camb. Philos. Soc. 64 (1968), 251-264. Zbl 0157.08401, MR 0222065, 10.1017/S0305004100042791 |
Reference:
|
[5] Gilmer, R.: Multiplicative Ideal Theory. Pure and Applied Mathematics. Vol. 12.Marcel Dekker New York (1972). MR 0427289 |
Reference:
|
[6] Hamann, E., Houston, E., Johnson, J. L.: Properties of uppers to zero in $R[x]$.Pac. J. Math. 135 (1988), 65-79. Zbl 0627.13007, MR 0965685, 10.2140/pjm.1988.135.65 |
Reference:
|
[7] Houston, E.: Uppers to zero in polynomial rings.Multiplicative Ideal Theory in Commutative Algebra. A Tribute to the Work of Robert Gilmer J. W. Brewer et al. Springer New York (2006), 243-261. Zbl 1116.13014, MR 2265813 |
Reference:
|
[8] Houston, E., Zafrullah, M.: UMV-domains.Arithmetical Properties of Commutative Rings and Monoids. Lecture Notes in Pure and Applied Mathematics 241 S. T. Chapman Chapman & Hall/CRC Boca Raton (2005), 304-315. Zbl 1079.13015, MR 2140703 |
Reference:
|
[9] Kaplansky, I.: Commutative Rings.Allyn and Bacon Boston (1970). Zbl 0203.34601, MR 0254021 |
Reference:
|
[10] Tang, H. T.: Gauss' lemma.Proc. Am. Math. Soc. 35 (1972), 372-376. Zbl 0266.13007, MR 0302638 |
Reference:
|
[11] Zafrullah, M.: The $D+XD_S[X]$ construction from GCD-domains.J. Pure Appl. Algebra 50 (1988), 93-107. MR 0931909, 10.1016/0022-4049(88)90006-0 |
Reference:
|
[12] Zafrullah, M.: What $v$-coprimality can do for you.Multiplicative Ideal Theory in Commutative Algebra. A Tribute to the Work of Robert Gilmer J. W. Brewer et al. Springer New York (2006), 387-404. Zbl 1138.13001, MR 2265821 |
. |