Previous |  Up |  Next

Article

Keywords:
distributional chaos; flow; invariant
Summary:
Schweizer and Smítal introduced the distributional chaos for continuous maps of the interval in B. Schweizer, J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Amer. Math. Soc. 344 (1994), 737–854. In this paper, we discuss the distributional chaos DC1–DC3 for flows on compact metric spaces. We prove that both the distributional chaos DC1 and DC2 of a flow are equivalent to the time-1 maps and so some properties of DC1 and DC2 for discrete systems also hold for flows. However, we prove that DC2 and DC3 are not invariants of equivalent flows although DC2 is a topological conjugacy invariant in discrete case.
References:
[1] Balibrea, F., Smítal, J., Štefánková, M.: The three versions of distributional chaos. Chaos Solitons Fractals 23 (2005), 1581-1583. MR 2101573 | Zbl 1069.37013
[2] Cao, Y.: Non-zero Lyapunov exponents and uniform hyperbolicity. Nonlinearity 16 (2003), 1473-1479. DOI 10.1088/0951-7715/16/4/316 | MR 1986306 | Zbl 1053.37014
[3] Downarowicz, T.: Positive topological entropy implies chaos DC2. Arxiv.org/abs/\allowbreak1110.5201v1.
[4] Schweizer, B., Smítal, J.: Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Am. Math. Soc. 344 (1994), 737-754. DOI 10.1090/S0002-9947-1994-1227094-X | MR 1227094 | Zbl 0812.58062
[5] Smítal, J., Štefánková, M.: Distributional chaos for triangular maps. Chaos Solitons Fractals 21 (2004), 1125-1128. DOI 10.1016/j.chaos.2003.12.105 | MR 2047330 | Zbl 1060.37037
[6] Sun, W., Young, T., Zhou, Y.: Topological entropies of equivalent smooth flows. Trans. Am. Math. Soc. 361 (2009), 3071-3082. DOI 10.1090/S0002-9947-08-04743-0 | MR 2485418 | Zbl 1172.37002
Partner of
EuDML logo