Previous |  Up |  Next

Article

Keywords:
self-orthogonal class; strongly $\mathcal {W}$-Gorenstein module; $\mathcal {C}$-resolution
Summary:
Let $\mathcal {W}$ be a self-orthogonal class of left $R$-modules. We introduce a class of modules, which is called strongly $\mathcal {W}$-Gorenstein modules, and give some equivalent characterizations of them. Many important classes of modules are included in these modules. It is proved that the class of strongly $\mathcal {W}$-Gorenstein modules is closed under finite direct sums. We also give some sufficient conditions under which the property of strongly $\mathcal {W}$-Gorenstein module can be inherited by its submodules and quotient modules. As applications, many known results are generalized.
References:
[1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. 2. ed., Graduate Texts in Mathematics 13. Springer New York (1992). MR 1245487
[2] Auslander, M., Bridger, M.: Stable module theory. Mem. Am. Math. Soc. 94 (1969). MR 0269685 | Zbl 0204.36402
[3] Bennis, D., Mahdou, N.: Strongly Gorenstein projective, injective, and flat modules. J. Pure Appl. Algebra 210 (2007), 437-445. DOI 10.1016/j.jpaa.2006.10.010 | MR 2320007 | Zbl 1118.13014
[4] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. DOI 10.1007/BF02572634 | MR 1363858 | Zbl 0845.16005
[5] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. Vol. 2. 2nd revised ed., de Gruyter Expositions in Mathematics 54. Walter de Gruyter Berlin (2000). MR 1753146
[6] Enochs, E. E., Jenda, O. M. G.: On $D$-Gorenstein modules. Interactions between ring theory and representations of algebras. Proceedings of the conference, Murcia Marcel Dekker New York (2000), 159-168. MR 1758408 | Zbl 0989.13018
[7] Enochs, E. E., Jenda, O. M. G.: $\Omega$-Gorenstein projective and flat covers and $\Omega$-Gorenstein injective envelopes. Commun. Algebra 32 (2004), 1453-1470. DOI 10.1081/AGB-120028791 | MR 2100367 | Zbl 1092.13031
[8] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A.: Covers and envelopes by $V$-Gorenstein modules. Commun. Algebra 33 (2005), 4705-4717. DOI 10.1080/00927870500328766 | MR 2188336 | Zbl 1087.16002
[9] Geng, Y., Ding, N.: $\mathcal{W}$-Gorenstein modules. J. Algebra 325 (2011), 132-146. DOI 10.1016/j.jalgebra.2010.09.040 | MR 2745532
[10] Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories. J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. DOI 10.1112/jlms/jdm124 | MR 2400403 | Zbl 1140.18010
[11] Wei, J.: $\omega$-Gorenstein modules. Commun. Algebra 36 (2008), 1817-1829. DOI 10.1080/00927870801940897 | MR 2424268 | Zbl 1153.16009
[12] Yang, X., Liu, Z.: Strongly Gorenstein projective, injective and flat modules. J. Algebra 320 (2008), 2659-2674. DOI 10.1016/j.jalgebra.2008.07.006 | MR 2441993 | Zbl 1173.16006
Partner of
EuDML logo