[1] Astola, L., Jalba, A., Balmashnova, E., Florack, L.:
Finsler streamline tracking with single tensor orientation distribution function for high angular resolution diffusion imaging. J. Math. Imaging Vision 41 (2011), 170–181.
DOI 10.1007/s10851-011-0264-4 |
MR 2843892 |
Zbl 1255.68185
[2] Bao, D., Chern, S. S., Shen, Z.:
An Introduction to Riemann–Finsler Geometry. Springer, New York, 2000.
MR 1747675 |
Zbl 0954.53001
[4] Busemann, H.:
Intrinsic Area. Ann. Math. 48 (1947), 234–267.
MR 0020626
[6] Chen, X. Y., Shen, Z. M.:
A comparison theorem on the Ricci curvature in projective geometry. Ann. Glob. Anal. Geom. 23 (2003), 14–155.
MR 1961373 |
Zbl 1043.53059
[7] Chern, S. S.:
Local equivalence and Euclidean connections in Finsler space. Sci. Rep. Nat. Tsing Hua Univ. Ser. A 5 (1948), 95–121.
MR 0031812
[8] Kasue, A.:
On a lower bound for the first eigenvalue of the Laplace operator on a Riemannian manifold. Ann. Sci. Ecole. Norm. Sup. 17 (1984), 31–44.
MR 0744066 |
Zbl 0553.53026
[9] Kim, C. W., Min, K.:
Finsler metrics with positive constant flag curvature. Ann. Glob. Anal. Geom. 92 (2009), 70–79.
MR 2471989 |
Zbl 1170.53055
[14] Shen, Z.:
The Non-linear Laplacian Finsler Manifolds. The Theory of Finslerian Laplacians and Applications (Antonelli, P. L., Lackey, B. C., eds.), Kluwer Acad. Publ., Dordrecht, 1998, pp. 187–198.
MR 1677366
[16] Shen, Z.: Curvature, distance and volume in Finsler geometry. IHES 311 (2003), 549–576.
[18] Wu, B. Y., Xin, Y. L.: Comparision theorem in Finsler geometry and their applications. Math. Ann. 337 (2007), 177–196.