Article
Keywords:
extent; Lindelöf degree; $\Sigma$-space; strict $p$-space; semi-stratifiable
Summary:
It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces.
References:
[4] Gruenhage G.:
Generalized metric spaces. Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 423–501.
MR 0776629 |
Zbl 0794.54034
[7] Jiang S.:
Every strict p-space is $\theta $-refinable. Topology Proc. 11 (1986), 309–316.
MR 0945506 |
Zbl 0637.54024
[9] Juhász I.:
Cardinal Functions in Topology. Mathematisch Centrum, Amsterdam, 1971.
MR 0340021
[10] Juhász I.:
Cardinal Functions in Topology – Ten Years Later. Mathematisch Centrum, Amsterdam, 1980.
MR 0576927 |
Zbl 0479.54001
[12] Nagami K.:
$\varSigma$-spaces. Fund. Math. 65 (1969), 169–192.
MR 0257963