Previous |  Up |  Next

Article

Keywords:
$g$-metrizable space; weak base; $sn$-network; compact map; boundary-compact map; sequence-covering map; 1-sequence-covering map; weak-open map; closed map
Summary:
In this paper, we prove that each sequence-covering and boundary-compact map on $g$-metrizable spaces is 1-sequence-covering. Then, we give some relationships between sequence-covering maps and 1-sequence-covering maps or weak-open maps, and give an affirmative answer to the problem posed by F.C. Lin and S. Lin in \cite{Lin.F.C.and.Lin.S-2011}.
References:
[1] An T.V., Tuyen L.Q.: Further properties of $1$-sequence-covering maps. Comment. Math. Univ. Carolin. 49 (2008), no. 3, 477–484. MR 2490441 | Zbl 1212.54092
[2] An T.V., Tuyen L.Q.: On $\pi$-images of separable metric spaces and a problem of Shou Lin. Mat. Vesnik, (2011)(to appear). MR 2965962
[3] Arhangel'skii A.V.: Mappings and spaces. Russian Math. Surveys 21 (1966), no. 4, 115–162. MR 0227950
[4] Engelking R.: General Topology (revised and completed edition). Heldermann Verlag, Berlin, 1989. MR 1039321
[5] Franklin S.P.: Spaces in which sequences suffice. Fund. Math. 57 (1965), 107–115. MR 0180954 | Zbl 0168.43502
[6] Ge Y.: Characterizations of $sn$-metrizable spaces. Publ. Inst. Math. (Beograd) (N.S) 74 (88) (2003), 121–128. DOI 10.2298/PIM0374121G | MR 2066998 | Zbl 1245.54016
[7] Lee K.B.: On certain $g$-first countable spaces. Pacific J. Math. 65 (1976), no. 1, 113–118. DOI 10.2140/pjm.1976.65.113 | MR 0423307 | Zbl 0359.54022
[8] Lin F.C., Lin S.: On sequence-covering boundary compact maps of metric spaces. Adv. Math. (China) 39 (2010), no. 1, 71–78. MR 2667123
[9] Lin F.C., Lin S.: Sequence-covering maps on generalized metric spaces. arXiv: 1106.3806.
[10] Lin S.: On sequence-covering $s$-mappings. Adv. Math. (China) 25 (1996), no. 6, 548–551. MR 1453163 | Zbl 0864.54026
[11] Lin S.: Point-Countable Covers and Sequence-Covering Mappings. Chinese Science Press, Beijing, 2002. MR 1939779 | Zbl 1004.54001
[12] Lin S., Liu C.: On spaces with point-countable $cs$-networks. Topology Appl. 74 (1996), 51–60. DOI 10.1016/S0166-8641(96)00043-0 | MR 1425925 | Zbl 0869.54036
[13] Lin S., Yan P.: Sequence-covering maps of metric spaces. Topology Appl. 109 (2001), 301–314. DOI 10.1016/S0166-8641(99)00163-7 | MR 1807392 | Zbl 0966.54012
[14] Lin S., Tanaka Y.: Point-countable $k$-networks, closed maps, and related results. Topology Appl. 59 (1994), 79–86. DOI 10.1016/0166-8641(94)90101-5 | MR 1293119 | Zbl 0817.54025
[15] Liu C.: On weak bases. Topology Appl. 150 (2005), 91–99. DOI 10.1016/j.topol.2004.11.008 | MR 2133670 | Zbl 1081.54026
[16] Siwiec F.: Sequence-covering and countably bi-quotient maps. General Topology Appl. 1 (1971), 143–154. DOI 10.1016/0016-660X(71)90120-6 | MR 0288737
[17] Siwiec F.: On defining a space by a weak base. Pacific J. Math. 52 (1974), 233–245. DOI 10.2140/pjm.1974.52.233 | MR 0350706 | Zbl 0285.54022
[18] Xia S.: Characterizations of certain $g$-first countable spaces. Adv. Math. 29 (2000), 61–64. MR 1769127 | Zbl 0999.54010
[19] Yan P., Lin S.: Point-countable $k$-networks, $cs^*$-network and $\alpha_4$-spaces. Topology Proc. 24 (1999), 345–354. MR 1802697 | Zbl 0966.54014
[20] Yan P., Lin S.: CWC. -mappings and metrization theorems, Adv. Math. (China) 36 (2007), no. 2, 153–158. MR 2362727
[21] Yan P.F., Lin S., Jiang S.L.: Metrizability is preserved by closed sequence-covering maps. Acta Math. Sinica 47 (2004), no. 1, 87–90. MR 2050500
Partner of
EuDML logo