Previous |  Up |  Next

Article

Keywords:
Orlicz-Sobolev spaces; Lorentz-Sobolev spaces; Trudinger embedding; Moser-Trudinger inequality; best constants
Summary:
Let $n\geq 2$ and $\Omega\subset \mathbb R^n$ be a bounded set. We give a Moser-type inequality for an embedding of the Orlicz-Sobolev space $W_0L^{\Phi}(\Omega)$, where the Young function $\Phi$ behaves like $t^n\log^{\alpha}(t)$, $\alpha<n-1$, for $t$ large, into the Zygmund space $Z_0^{\frac{n-1-\alpha}{n}}(\Omega)$. We also study the same problem for the embedding of the generalized Lorentz-Sobolev space $W_0^mL^{\frac{n}{m},q}\log^{\alpha}L(\Omega)$, $m< n$, $q\in (1,\infty]$, $\alpha<\frac{1}{q'}$, embedded into the Zygmund space $Z_0^{\frac{1}{q'}-\alpha}(\Omega)$.
References:
[1] Adachi S., Tanaka K.: Trudinger type inequalities in $\mathbb R^N$ and their best exponents. Proc. Amer. Math. Soc. 128 (199), no. 7, 2051–2057. DOI 10.1090/S0002-9939-99-05180-1 | MR 1646323
[2] Adams D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. of Math. 128 (1988), 385–398. DOI 10.2307/1971445 | MR 0960950 | Zbl 0672.31008
[3] Adimurthi,: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 393–413. MR 1079983
[4] Adimurthi,: Positive solutions of the semilinear Dirichlet problem with critical growth in the unit disc in $\mathbb R^2$. Proc. Indian Acad. Sci. Math. Sci. 99 (1989), 49–73. DOI 10.1007/BF02874647 | MR 1004638
[5] Alberico A.: Moser type inequalities for higher-order derivatives in Lorentz spaces. Potential Anal. 28 (2008), 389–400. DOI 10.1007/s11118-008-9085-5 | MR 2403289 | Zbl 1152.46019
[6] Alvino A.: A limit case of the Sobolev inequality in Lorentz spaces. Rend. Accad. Sci. Fis. Mat. Napoli (4) 44 (1977), 105–112. MR 0501652
[7] Alvino A., Ferone V., Trombetti G.: Moser-type inequalities in Lorentz spaces. Potential Anal. 5 (1996), 273–299. MR 1389498 | Zbl 0856.46020
[8] Cassani D., Ruf B., Tarsi C.: Best constants for Moser type inequalities in Zygmund spaces. Mat. Contemp. 36 (2009), 79–90. MR 2582539 | Zbl 1196.46023
[9] Černý R.: Concentration-compactness principle for embedding into multiple exponential spaces. Math. Inequal. Appl. 15 (2012), no. 1, 165–198. MR 2919441 | Zbl 1236.46027
[10] Černý R., Cianchi A., Hencl S.: Concentration-compactness principle for Moser-Trudinger inequalities: new results and proofs. Ann. Mat. Pura Appl., to appear (preprint is available at http://www.karlin.mff.cuni.cz/kma-preprints/)
[11] Černý R., Gurka P.: Moser-type inequalities for generalized Lorentz-Sobolev spaces. Houston. Math. J., to appear (preprint is available at http://www.karlin.mff.cuni.cz/kma-preprints/)
[12] Černý R., Mašková S.: A sharp form of an embedding into multiple exponential spaces. Czechoslovak Math. J. 60 (2010), no. 3, 751–782. DOI 10.1007/s10587-010-0048-9 | MR 2672414
[13] Cianchi A.: A sharp embedding theorem for Orlicz-Sobolev spaces. Indiana Univ. Math. J. 45 (1996), 39–65. DOI 10.1512/iumj.1996.45.1958 | MR 1406683 | Zbl 0860.46022
[14] Cianchi A.: Moser-Trudinger inequalities without boundary conditions and isoperimetric problems. Indiana Univ. Math. J. 54 (2005), 669–705. DOI 10.1512/iumj.2005.54.2589 | MR 2151230 | Zbl 1097.46016
[15] Edmunds D.E., Gurka P., Opic B.: Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces. Indiana Univ. Math. J. 44 (1995), 19–43. DOI 10.1512/iumj.1995.44.1977 | MR 1336431 | Zbl 0826.47021
[16] Edmunds D.E., Gurka P., Opic B.: Double exponential integrability, Bessel potentials and embedding theorems. Studia Math. 115 (1995), 151–181. MR 1347439 | Zbl 0829.47024
[17] Edmunds D.E., Gurka P., Opic B.: Sharpness of embeddings in logarithmic Bessel-potential spaces. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 995-1009. MR 1415818 | Zbl 0860.46024
[18] Edmunds D.E., Gurka P., Opic B.: On embeddings of logarithmic Bessel potential spaces. J. Funct. Anal. 146 (1997), 116–150. DOI 10.1006/jfan.1996.3037 | MR 1446377 | Zbl 0934.46036
[19] Edmunds D.E., Gurka P., Opic B.: Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms. J. Funct. Anal. 170 (2000), 307–355. DOI 10.1006/jfan.1999.3508 | MR 1740655
[20] Edmunds D.E., Krbec M.: Two limiting cases of Sobolev imbeddings. Houston J. Math. 21 (1995), 119–128. MR 1331250 | Zbl 0835.46027
[21] Fusco N., Lions P.-L., Sbordone C.: Sobolev imbedding theorems in borderline cases. Proc. Amer. Math. Soc. 124 (1996), 561–565. DOI 10.1090/S0002-9939-96-03136-X | MR 1301025 | Zbl 0841.46023
[22] Hencl S.: A sharp form of an embedding into exponential and double exponential spaces. J. Funct. Anal. 204 (2003), no. 1, 196–227. DOI 10.1016/S0022-1236(02)00172-6 | MR 2004749 | Zbl 1034.46031
[23] Lions P.L.: The concentration-compactness principle in the calculus of variations. The limit case, Part I. Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. DOI 10.4171/RMI/6 | MR 0834360
[24] Lorentz G.G.: On the theory of spaces $\Lambda$. Pacific J. Math. 1 (1951), 411–429. DOI 10.2140/pjm.1951.1.411 | MR 0044740 | Zbl 0043.11302
[25] Moser J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 (1971), 1077–1092. DOI 10.1512/iumj.1971.20.20101 | MR 0301504
[26] Opic B., Pick L.: On generalized Lorentz-Zygmund spaces. Math. Inequal. Appl. 2 (1999), no. 3, 391–467. MR 1698383 | Zbl 0956.46020
[27] Pohozhaev S.I.: On the imbedding Sobolev theorem for $pl=n$. Doklady Conference, Section Math., pp. 158–170, Moscow Power Inst., Moscow, 1965.
[28] Rao M.M., Ren Z.D.: Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc., New York, 1991. MR 1113700 | Zbl 0724.46032
[29] Trudinger N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473–484. MR 0216286 | Zbl 0163.36402
[30] Yudovich V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Soviet Math. Doklady 2 (1961), 746–749. Zbl 0144.14501
Partner of
EuDML logo