[3] Adimurthi,:
Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 393–413.
MR 1079983
[4] Adimurthi,:
Positive solutions of the semilinear Dirichlet problem with critical growth in the unit disc in $\mathbb R^2$. Proc. Indian Acad. Sci. Math. Sci. 99 (1989), 49–73.
DOI 10.1007/BF02874647 |
MR 1004638
[6] Alvino A.:
A limit case of the Sobolev inequality in Lorentz spaces. Rend. Accad. Sci. Fis. Mat. Napoli (4) 44 (1977), 105–112.
MR 0501652
[7] Alvino A., Ferone V., Trombetti G.:
Moser-type inequalities in Lorentz spaces. Potential Anal. 5 (1996), 273–299.
MR 1389498 |
Zbl 0856.46020
[8] Cassani D., Ruf B., Tarsi C.:
Best constants for Moser type inequalities in Zygmund spaces. Mat. Contemp. 36 (2009), 79–90.
MR 2582539 |
Zbl 1196.46023
[9] Černý R.:
Concentration-compactness principle for embedding into multiple exponential spaces. Math. Inequal. Appl. 15 (2012), no. 1, 165–198.
MR 2919441 |
Zbl 1236.46027
[10] Černý R., Cianchi A., Hencl S.:
Concentration-compactness principle for Moser-Trudinger inequalities: new results and proofs. Ann. Mat. Pura Appl., to appear (preprint is available at
http://www.karlin.mff.cuni.cz/kma-preprints/)
[16] Edmunds D.E., Gurka P., Opic B.:
Double exponential integrability, Bessel potentials and embedding theorems. Studia Math. 115 (1995), 151–181.
MR 1347439 |
Zbl 0829.47024
[17] Edmunds D.E., Gurka P., Opic B.:
Sharpness of embeddings in logarithmic Bessel-potential spaces. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 995-1009.
MR 1415818 |
Zbl 0860.46024
[19] Edmunds D.E., Gurka P., Opic B.:
Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms. J. Funct. Anal. 170 (2000), 307–355.
DOI 10.1006/jfan.1999.3508 |
MR 1740655
[20] Edmunds D.E., Krbec M.:
Two limiting cases of Sobolev imbeddings. Houston J. Math. 21 (1995), 119–128.
MR 1331250 |
Zbl 0835.46027
[23] Lions P.L.:
The concentration-compactness principle in the calculus of variations. The limit case, Part I. Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201.
DOI 10.4171/RMI/6 |
MR 0834360
[26] Opic B., Pick L.:
On generalized Lorentz-Zygmund spaces. Math. Inequal. Appl. 2 (1999), no. 3, 391–467.
MR 1698383 |
Zbl 0956.46020
[27] Pohozhaev S.I.: On the imbedding Sobolev theorem for $pl=n$. Doklady Conference, Section Math., pp. 158–170, Moscow Power Inst., Moscow, 1965.
[28] Rao M.M., Ren Z.D.:
Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc., New York, 1991.
MR 1113700 |
Zbl 0724.46032
[29] Trudinger N.S.:
On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473–484.
MR 0216286 |
Zbl 0163.36402
[30] Yudovich V.I.:
Some estimates connected with integral operators and with solutions of elliptic equations. Soviet Math. Doklady 2 (1961), 746–749.
Zbl 0144.14501